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Abstract 

A geochemical study was conducted in the legacy mining area in Oruro, the Bolivian Altiplano to examine the 

distribution of trace elements (TEs) in agricultural soils and their uptake by crops. The pseudo-total, bioavailable 

fractions of TE and sequential extraction fraction of As contents were determined in soils. The pseudo-total 

concentration of TEs in soils suggests naturally elevated background levels. The strong correlation (p < 0.01) 
between Feregia/Mnregia-Asregia, Curegia, and Znregia suggests that secondary iron oxides play a key role in adsorbing 
these TEs. Species linked to carbonates are also present, but negative (r = -0.51; p < 0.01) correlation between soil 

pH and AsDTPA suggests that the retention of TEs in carbonate is not dominant. The chelate diethylene-triamine-
pentaacetic acid (DTPA) method extracted less than 2% of total As, whereas sequential fractionation reported up 
to 12% as potentially mobilized (F1–non-specifically-bound + F2–specifically-bound), posing a risk of transfer to 

crops or groundwater. As, Cd and Pb tend to accumulate in soils by binding to amorphous and crystalline Fe oxide 
surfaces. Arsenic levels in beans and alfalfa (0.19 mg/kg), barley (0.17 mg/kg), and peeled potatoes (0.11 mg/kg), Cd 

levels in beans (0.03 mg/kg), alfalfa (0.017 mg/kg), barley (0.012 mg/kg), and peeled potatoes (0.023 mg/kg), 
remained within Chilean, FAO, WHO, and European regulatory limits. However, Pb concentrations exceeded 
permissible limits in beans (0.32 mg/kg), and alfalfa (0.22 mg/kg); however peeled potatoes (0.16 mg/kg) and barley 

(0.16 mg/kg) remained below the threshold of European guidelines. 

Keywords: Bolivian Altiplano; Crops; Bioavailable Trace Elements; Accumulation; Transfer Factor. 

1. Introduction 

Occurrence of trace elements (TEs) in soil, stream sediments and groundwater systems can raise risk concerns for 
environmental and human health (Shaw, 1990; Ormachea et al., 2015; Bundschuh et al., 2017; Sikakwe et al., 2023). 

The long-term accumulation of TEs in soils resulting from anthropogenic activities such as mining, industrial 
operations, can lead to contamination of drinking water sources and agricultural lands, thereby posing significant 

risks to ecosystem health and humans and live stocks (Shaw, 1990; Maity et al., 2012; Bundschuh et al., 2017; 
Taghavi et al., 2023; Mukherjee et al., 2024). The most common TEs released due to anthropogenic activities 
especially in the mining environments include  arsenic (As), antimony (Sb), beryllium (Be) cadmium (Cd), chromium 

(Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), thallium (Tl), and zinc (Zn) and 
distributed in different environmental compartments including the air, water, soil, and biota (Kabata-Pendias and 
Pendias, 2001). The complex behavior of TEs is triggered by environmental biogeochemical cycles, which may 

exert significant control on their fate in terms of mobility, transport and residence time (Bundschuh et al., 2017; 

Peirovi-Minaee et al., 2024). The bioavailability of TEs depends on their speciation and soil properties (Adamo et 

al., 2024). Plants often serve as intermediate reservoirs, facilitating the transfer of TEs from soils and water to 
humans and animals (Kabata-Pendias and Pendias, 2001; Adamo et al., 2024). 

The total TE concentration in soils is considered to be an indicator of geoaccumulation from various sources 

and long-term enrichment, but these values do not give any information about the potential availability of the TEs, 
and the pathway by which they can affect the soil, crop and/or human being (Massas et al., 2013). However, 

available TEs in soils extracted by a single diethylene-triamine-pentaacetic acid (DTPA) step can probably be an 
indicator of recent soil enrichment (Massas et al., 2013; Tziouvalekas et al., 2024) and additionally provide a 
reasonable estimation of plant-available TEs reservoir in soils (Lindsay and Norvell, 1978). 

Bundschuh et al. (2012) discussed the presence of As in the food chain across Latin America. Among the 
countries in Latin America, significant levels of TEs, including As, have been reported in food in Mexico (Prieto-
García et al., 2005), Argentina (Perez-Carrera et al., 2009), and Chile (Muñoz et al., 2002; Díaz et al., 2004; Sancha 

and Marchetti, 2009; Díaz et al., 2011). Queirolo et al. (2000) in Andean villages of northern Chile reported high 
As, Cd and Pb contents in vegetables. In other areas of Chile, studies show that the levels of total As in vegetables 

were below the maximum limit of Chilean legislation (Muñoz et al., 2002; Calderon et al., 2023). Rötting et al. 
(2013) reported high content of As and heavy metals in soils and crops near the Vinto Metallurgical Company 
(VMC) in Oruro (Bolivian Altiplano). 

Trace elements ingestion through food is one of the main pathways for accumulation in the human body over 
time (Romero-Crespo et al., 2023). Metals such as Cr, Cd, Mn, and Ni can be very toxic and their accumulation 

inside the body can cause serious diseases (Khan et al., 2010; Sun et al., 2010; Khan et al., 2013). Food 
contaminated with Cd can cause bone fracture, kidney dysfunction, hypertension, and even cancer (Nordberg et 
al., 2002; Turkdogan et al., 2003; Charkiewicz et al., 2023). High content of Mn and Cu can cause mental diseases 

such as Alzheimer disease (Dieter et al., 2005; Liu et al., 2022). Nickel ingestion can cause dizziness, fatigue, 
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headache, heart problems, fatal cardiac arrest, and respiratory illness (Muhammad et al., 2011). Excessive Zn can 
cause sideroblastic anemia; however, in contrast Zn deficiency can cause anorexia (poor appetite), diarrhea, 

dermatitis, depression immune dysfunction, and poor wound healing. Therefore, an adequate amount of Zn is very 

important for normal body functions (Muhammad et al., 2011; Khan et al., 2013; Stiles et al., 2024). 

In the Oruro (Bolivian Altiplano), TE concentrations in soils exhibited high median concentrations in mining 
areas (PPO, 1993-1996; Tapia et al., 2012; Tapia et al., 2022). Elevated natural geochemical background and the 
presence of mining activities (PPO–03, 1996; PPO–04, 1996; PPO–13, 1996) are the most important sources of 

TEs in surface and groundwater (Banks et al., 2002; Banks et al., 2004; Ramos Ramos et al., 2010; Ramos Ramos et 
al., 2012; Ormachea et al., 2013; Ramos Ramos et al., 2014), lake sediments (Cáceres Choque et al., 2013; Tapia 
and Audry, 2013). Rötting et al. (2013) have studied the As and Pb contents in soils and crops near to smelter of 

the Vinto Metallurgical Company (VCM) in Oruro. Their results suggested that all crops cultivated around VCM by 
far exceeded As and Pb (FAO/WHO, UK and Chilean) guidelines for human and/or animal consumption. 

Agricultural crops, especially potato, beans and barley, are the main crops grown for human consumption and 
they are sold in the markets of mining villages (Huanuni, Poopó, Pazña, Bolivar, and Challapata) and Oruro city. 
Potato, beans, and barley form an important part of the diet in the Bolivian Altiplano; additionally, alfalfa is also 

studied. However, distributions of TEs in the soil, their bioavailable fractions and their content in crops is a key 

issue that has to better understood in mining and rural areas of the Poopó Basin. 

The present study aimed to i) determine the pseudo-total concentrations and sources of As and TEs, ii) 
evaluate the bio-available concentrations of As and TEs in plants, iii) analyze As speciation in soil and crops, and iv) 
assess the uptake the As and TEs by crops in three small sub-basins of Oruro, Bolivian Altiplano. Additionally, the 

study also evaluates the potential health risks for consumers in mining areas. The findings could be essential for 
developing effective soil management strategies to enhance food quality in the future. 

2. Materials and methods  

2.1 Study area  

The study area is located in three small sub-basins in the Oruro province of the Bolivian Altiplano. The sampling 

sites were along the Coriviri, Ventaimedia and Poopó sub-basins (Fig. 1) within the small agricultural areas in the 

drainage sub-basins. It is located between 18°10′ and 18°30′ S latitude and 66°47′–67°01′ W longitude and between 
3,795 and 4,160 m a.s.l. (above sea level). The land use is agriculture and livestock (61%; INE, 2005) and the 

farmers are dependent on surface water for irrigation as well as on seasonal rainfall. Farmers cultivate primarily 

during the rainy season (from November to March). The average annual rainfall is 372 mm (Pillco and Bengtsson, 
2006). 

 

Figure 1. The study area and location of sampling points along the transects (Coriviri –T1, Ventaimedia –T2 and Poopó –T3). 
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The agricultural soils are generally prepared for cultivation during August to September by applying animal 
manure (sheep, bovine and camelid) and crop rotation is usually practiced, and the cycles begin with potato, quinoa 

or beans, alfalfa, and finally barley. 

2.2 Sample collection and preparation 

Soil samples were collected (n = 36) along three transects in Coriviri (T1), Ventaimedia (T2) and Poopó (T3) (Fig. 
1). Samples (~2 kg) were collected from the arable layer (0 – 45 cm depth). The soil samples were air dried at 
ambient temperature, sieved through a 2 mm sieve, and all the analyses were made on the fine earth fraction (< 

2 mm) (Cornejo-Ponce and Acarapi-Cartes, 2011) (Table 1). The crops were collected concurrently with the 
surface soil samples (0 – 20 cm depth) at the same sites during the period of harvesting. In the laboratory, the 

stems of alfalfa (Medicago sativa, n = 4), edible portion of barley (Hordeum vulgare, n = 13), bean (Vicia faba, n = 7) 

and potato (Solanum tuberosum, n = 12) were washed thrice with de-ionized water, air dried at ambient 
temperature for a day followed by oven drying at 70 – 80oC for 24 h to remove the moisture (Del Rio et al., 2002) 

and crushed with mortar and pestle. 

2.3 Determination of physicochemical properties and trace element contents 

2.3.1 Determination of soil properties 

Soil pH was determined in 1M KCl solution (1:2 solid:solution ratio) with a pH meter. The soil texture was 
determined with a soil hydrometer (ASTM 152H), and the electrical conductivity (EC) was determined in 

deionized water extraction procedure (1:5 solid:solution ratio) with an electrical conductivity meter. Cation 
exchange capacity (CEC) was determined using the CH3COONH4 method and plant-available phosphorus (Pas) was 
determined by the Bray-Kurtz method (Bray and Kurtz, 1945). The organic matter (OM) was determined by the 

modified Walkley-Black method (Walkley, 1946; Jackson, 1958) and soil water content was determined 

gravimetrically. 

2.3.2 Determination of soil mineralogical characteristics 

The identification of minerals in selected soils samples was carried out by powder X-Ray Diffraction method 

(model Seifert XRD 3003 TT, with Cu Kα1, 1.5418Å, radiation) to identify the bulk mineral composition at the 

Instituto de Geología y Medio Ambiente (IGEMA) at Universidad Mayor de San Andrés (UMSA) in La Paz, Bolivia. 

2.3.3 Pseudo-total extraction of trace elements  

Pseudo-total extraction of TEs (As, Cd, Cu, Pb and Zn) was carried out by digestion of 0.5 g of soil in 12 mL of 
Aqua Regia (1:3 mixture of HNO3 and HCl; sub-boiling acids). The extraction method is considered suitable for 

total-recoverable TEs in soils (ISO/DIS 11466, 1994; Chen and Ma, 2001; Burak et al., 2010). Analytical grade 
reagents were used for digestion. The analytical work involved determination of TEs in the < 2 mm grain size 
fraction of the soils. The soils were digested in microwave pressure vessels (3000 Anton Paar) at 280oC 

temperature and an operating pressure of 79 bar. The residual suspension was filtered through Whatman 

quantitative filter paper (grade 50, pH resistance) after cooling. 

The TEs concentrations in soil extractions were determined by inductively coupled plasma optical emission 
spectrometry (ICP-OES; Varian Instruments, model Varian Vista Pro Ax) at the Department of Geological 
Sciences, Stockholm University, Sweden. Following the run of every 10 samples, certified standards (NIST 1643e), 

and synthetic multi-element chemical standards were run. Relative percentage difference among the duplicate runs 
and deviations from the certified and synthetic standards was within ±10%. 

2.3.4 Extraction of bioavailable fraction of trace elements  

The bioavailable fractions of TEs (As, Cd, Cu, Pb and Zn) were determined through diethylene-triamine-
pentaacetic acid (DTPA) extraction (analytical grade, 0.005 M DPTA, 0.01 M calcium chloride, CaCl2), and 0.1 M 

triethanolamine (TEA), (HOCH2CH2)3N) adjusted to pH 7.3 with hydrochloric acid (HCl) (Lindsay and Norvell, 
1978). The soil samples (5.0 g) were taken in a polypropylene tube and then 10 mL of the DTPA extraction 

solution was added and shake for 2 hours shaking in a horizontal shaker. Then, the extract was separated from the 

solids by centrifugation at 3,000 rpm (revolutions per minute) and the supernatants were filtered through 0.45 µm 
paper filters (ASA, 1982). Analytical grades reagents were used throughout the analyses. The bioavailable TE in soil 

extractions were determined by ICP-OES at the Department of Geological Sciences, Stockholm University, 
Sweden. 
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Table 1. Physical and chemical properties of soil (n = 36) in Coriviri –T1, Ventaimedia –T2 and Poopó –T3. 

Soil properties Transect 1 Transect 2 Transect 3 

Min Max Mean Min Max Mean Min Max Mean 

Soil (depth, cm) 11 40 33 12 45 30 10 30 21 

Sand (%) 27 56 48 17 56 46 38 63 46 

Silt (%) 23 44 31 20 54 35 16 36 30 

Clay (%) 16 28 22 16 30 22 17 25 22 

pH 6.1 7.1 6.8 5.4 7.7 6.1 5.8 7.8 6.5 

EC (dS/cm) 0.06 0.20 0.12 0.07 1.50 0.14 0.05 2.40 0.13 

CEC (cmol+/kg) 5.7 16.9 8.1 5.7 18.5 9.4 5.9 26.1 9.2 

Pas (mg/L) 7.3 16.8 9.2 5.1 28.3 8.3 7.3 16.8 7.4 

OM (%) 0.5 2.3 1.1 0.7 2.5 1.2 0.6 2.2 0.9 

 

2.3.5 Sequential extraction of As in soil   

The amount of 2.0 g dry soil was used to determine the As content in different fractions by a sequential extraction 
following the procedure of Wenzel et al. (2001). The sequential extraction is represented by: i) Fraction 1 (F1); 

(0.05 M (NH4)2SO4, recovers the non-specifically-bound AsF1; ii) Fraction 2 (F2); releases specifically-bound AsF2 

using phosphate solution (NH4)H2PO4, 0.05 M; iii) Fraction 3 (F3); recovers amorphous hydrous oxide-bound AsF3 
(0.2 M (NH4)2C2O4/H2C2O4); iv) Fraction 4 (F4); extracts AsF4 bound to crystalline hydrous oxide (0.2 M 

(NH4)2C2O4/H2C2O4) + 0.1 M C6H8O6) and v) Fraction 5 (F5); (HNO3, 65% m/v) recovers the residual AsF5 
fraction. After each step, the extracted solution was filtered using Munktell quantitative filter paper (pure cellulose 

and alpha-cellulose, grade 00H; 1-2 µm). An internal check on the sequential extraction procedure was performed 
by comparing the sum of the five fractions with the total concentrations measured in the Aqua Regia extract. 

The TEs concentrations in soil at sequential extractions were determined by ICP-OES at the Department of 

Geological Sciences, Stockholm University, Sweden. TEs concentration associated to a specific extractant was 
expressed as follows: [i]j where i is the TE and j relates to the extractant (i.e., [i]regia for HNO3/HCl, [i]DTPA for 

DTPA and [i]F1 - F5 for the sequential extraction with fractions 1 – 5. 

2.3.6 Estimation of trace elements (As, Cd and Pb) in crops 

Total As, Cd and Pb concentrations in crops were determined by digesting the dry samples (0.30 g) in a mixture of 

4 mL ultra-pure H2O2 (30% v/v), 0.5 mL HNO3 and 4 mL HCl (chemical grade, bi-distilled, Merck, Germany) using 

microwave (3000 Anton Paar) digestion system at 280oC temperature (Cui et al., 2004). After cooling the digested 
samples were filtered through Whatman quantitative filter paper (grade 50, pH resistance). 

The TEs concentrations in crops extractions were determined ICP-OES at Department of Geological 
Sciences, Stockholm University, Sweden. The quality control included the preparation of blanks (blanks, spiked 

blanks) and samples (duplicate and spiked samples) were digested randomly and analyzed. The duplicates showed a 
difference of ±10%, and the spiked addition gave between 90 and 105 recovery percentage. 

2.4 Statistical analysis 

The data were analyzed using SPSS to calculate mean values, standard deviations and nonparametric Spearman 
correlations for the measured physical and chemical parameters across transects. The significance of differences 

between mean values of different subgroups was determined by Student´s t-test.     

2.5 Availability ratio and transfer factor 

The available TEs ratio (Massas et al., 2009; Massas et al., 2010) in soil was calculated as follows:  
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( )
( )kgmgsoilinionconcentratelementtraceTotal

kgmgionconcentratelementtraceAvailable
AR

/,

/,
=    (1) 

The availability ratio (AR) (Eq. 1) is used to estimate the soil TE enrichment, or even a slow transformation to 
more stable forms that has been discussed in previous studies (Massas et al., 2009; Massas et al., 2010; Massas et 

al., 2013). 

The transfer factor (TF) soil-to-plant (edible part) is a measure of the uptake of TEs by plants from soil (Cui et 

al., 2004; Rötting et al., 2013) and is calculated using the element content data in crop and soil samples (Eq. 2): 

 

( )
( )dw

fw

kgmgsoilinionconcentratelementtraceTotal

kgmgplantinionconcentratelementtraceTotal
TF

/,

/,
=   (2) 

 

where mg/kgfw and mg/kgdw represent TE content on fresh weight (fw) and dry weight (dw) basis, respectively. 

3. Results and discussion  

3.1. Soil characteristics 

3.1.1 Chemical characteristics 

The soil geochemical characteristics are listed in Table 1. The soil pH values (pH 5.4 – 7.8) were weakly acid to 

weakly basic (Fig. 2a). The minor variability of pH shows a homogeneous trend in the cultivated area. The soil 

texture was broadly homogeneous among all sites with the grain size distribution dominated by sand (mean 45%) 
and silt (mean 33%) fractions. The clay contents in the soils along the transects do not show a major difference, 

with a maximum value of 30% (Fig. 2b). 

The mean values of EC in the soil extracts at three transects indicate salt accumulation in the soils. The 

highest EC values of 2.40 dS/cm was observed in the T3 transect, likely due to the fact that many samples are 
located near the Lake Poopó (Fig. 1). The data show a large variability in EC values in soil of T3 transect. The high 

EC values in soils could be explained by the occurrence of underground paleoevaporites dissolution (Coudrain-

Ribstein et al., 1995; Argollo and Mourguiart, 2000; Zapata, 2011; Liu et al., 2021). 

The CEC values were relatively low (5.7 – 26.1 cmol[+]/kg). The CEC classification show that the soils are 

moderate and low, a few samples show a high value. Even though there were high CEC values in some samples 
with high clay and OM contents, the lower CEC values were due to clay types (kaolinite 3 – 15 cmol[+]/kg) and 
OM contents. The mean OM contents were 1.1%, 1.2% and 0.9% for T1, T2, and T3, respectively (Table 1). 
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Figure 2. Box and Whisker plots of a) pH and b) % clay, sand and silt content in the study area transects (Coriviri –T1, Ventaimedia –T2 

and Poopó –T3). 
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3.1.2 Soil mineralogy 

The colluvial/fluvial soils were developed on parent materials derived from surrounding geological formations in 

the three studied areas (Fig. 1). The mineralogical analyses of samples from the three sites revealed that in 

transect T1 the predominant minerals were silicate (quartz) and alumino-silicates (muscovite, merlinoite and 

chlorite). Transect T2 also contains silicate (quartz) and alumino-silicates (muscovite, albite and kaolinite), while T3 
contain silicate (quartz), alumino-silicates (anorthite, muscovite, kaolinite) and magnesium arsenate (Fig. 3). It is 
highlighted that magnesium arsenate mineral only occurs in T3, this area near to the waste mineral deposit from 

the San Francisco mine and other old mine activities in the area. The occurrence of kaolinite in inundated alluvial 
plains indicates the ultimate chemical alteration of the predominant silicate rocks present at the three sites.  

3.2 Pseudo-total TEs and identification of their origin 

The Asregia content was not significantly different among the three transects (p < 0.05, one-way ANOVA, 
significance level of 0.23). The Asregia contents in soil were ranging from 9.3 to 40 mg/kg (mean 23.3, 22.1, 18.4 

mg/kg at sites T1, T2, and T3, respectively) (Table 2, Fig 4). There was a moderately high total As content in 
transect T1 (13 – 38 mg/kg), which may be related to the high OM content (0.5 – 2.3 %) in the study area. The 
values for Cd, Cu, Pb and Zn and ANOVA analysis show that there are no significant differences among the three 

sub-basins (p < 0.05) for each analyzed TEs, possibly indicating that they have common sources. 

The concentrations of As, Cd, Cu, and Pb in aqua regia extracts are lower than the median values reported by 

Oruro Pilot Plan (PPO, 1993-1996; Table 2); only the Zn concentrations are slightly higher than the reported 
concentrations in the PPO report. In comparison with the world soils database (Han, 2007), As, Cd, Pb and Zn 
concentrations are higher, while Cu concentrations are lower than the world soils average values (Han, 2007), 

suggesting that the three areas could have high background values. These high contents are probably related to the 
geological conditions in the Eastern Cordillera with the abundant presence of the polymetallic elements (Ag-Pb-Zn-

Sn-Sb) in this mining district (Arce-Burgoa and Goldfarb, 2009; Tapia et al., 2012). The TEs extracted with aqua 
regia are used to estimate the maximum TE availability to plants (Chen and Ma, 2001; D’Souza et al., 2023). 

The strong positive correlations (r > 0.5; Spearman´s correlation) among the TE pairs (Asregia-Cdregia, Curegia, 

Pbregia), (Cdregia-Curegia, Pbregia, Znregia), (Curegia-Pbregia, Znregia), (Pbregia-Znregia) pairs could indicate a relationship between 
them (Table 3). The correlation (p < 0.01) observed between Feregia/Mnregia-Asregia, Curegia, and Znregia possibly 
indicates the potential role of secondary iron oxides for the adsorption of As and other TEs, as already described 

in the literature (Burak et al., 2010). Also, Cdregia-CuDTPA, CdDTPA-PbDTPA and CdDTPA-ZnDTPA are significantly 
correlated at the p < 0.01 level (Table 3). 

A geogenic origin for the TEs in the soils at the three sites is more likely than an anthropogenic origin, given 
the high background levels observed in these locations (Tapia and Audry, 2013).  

 

 

Figure 3. X-ray diffraction of selected soils samples: a) three transects (T1, T2, and T3) and profile POM2 (4, 7, and 9 m), and b) 

standard magnesium arsenate (Mg2As2O7) mineral.
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Table 2. Trace element concentration, aqua regia extracts, DTPA extracts and arsenic fractionation (concentration expressed as mg/kg, dry weight basis, dw) and availability ratio (AR) in the 

Coriviri –T1, Ventaimedia –T2 and Poopó –T3.  

Location 
Transect 1, n = 11 Transect 2, n = 14 Transect 3, n = 11 § Oruro ¤ World soil 

Min Max Median Mean Min Max Median Mean Min Max Median Mean Median Average 

Aqua regia extracts 
              

As 13.8 38.5 21.52 23.3 9.3 40.2 19.48 22.1 14.3 27.0 17.49 18.4 25 5-10 

Cd 0.2 0.9 0.8 0.52 0.3 1.2 0.66 0.65 0.2 2.1 0.51 0.73 3 0.35 

Cu 8.7 48.6 20.11 20.52 9.4 41.1 21.47 21.04 9.3 21.0 15.11 15.74 26 30 

Pb 20.4 104.4 40.3 49.35 15.8 85.9 40.51 45.83 16.6 138.7 30.9 45.54 49 15-25 

Zn 54.5 232.5 81.38 92.99 58.0 203.0 112.88 120.18 45.5 246.6 69.09 96.78 77 90 

DTPA extracts Transect 1, n = 8 Transect 2, n = 13 Transect 3, n = 6 
  

As 0.04 0.12 0.06 0.07 0.03 0.35 0.06 0.09 0.06 0.11 0.09 0.08 na na 

Cd 0.03 0.11 0.06 0.06 0.03 0.39 0.07 0.13 0.02 0.41 0.04 0.11 na na 

Cu 0.58 1.21 0.93 0.91 0.36 1.24 0.65 0.78 0.64 1.77 0.84 1.07 na na 

Pb 0.48 1.66 0.81 0.98 0.42 1.64 0.52 0.75 0.20 1.04 0.48 0.55 na na 

Zn 1.16 2.45 1.59 1.67 0.70 16.09 2.75 4.96 0.13 36.81 0.48 7.00 na na 

Availability Ratio (AR) Transect 1, n = 8 Transect 2, n = 13 Transect 3, n = 6 
  

As 0.001 0.007 na 0.003 0.001 0.020 na 0.005 0.003 0.005 na 0.004 na na 

Cd 0.035 0.280 na 0.157 0.050 0.328 na 0.174 0.010 0.802 na 0.202 na na 

Cu 0.017 0.067 na 0.052 0.025 0.069 na 0.041 0.031 0.089 na 0.058 na na 

Pb 0.005 0.047 na 0.027 0.011 0.033 na 0.018 0.002 0.034 na 0.014 na na 

Zn 0.006 0.031 na 0.020 0.009 0.101 na 0.035 0.001 0.484 na 0.092 na na 

Arsenic fractionation All transects combined (n = 12) 
  

As-F1 0.14 0.29 0.14 0.17 na na na na na na na na na na 

As-F2 0.60 2.84 1.00 1.13 na na na na na na na na na na 

As-F3 4.29 12.06 6.48 7.14 na na na na na na na na na na 

As-F4 2.30 9.96 5.59 6.05 na na na na na na na na na na 

As-F5 1.68 28.35 6.28 7.62 na na na na na na na na na na 

§ PPO 93-96. Trace elements content in soils of Oruro, aqua regia digestion method; ¤ Han, 2007. World soil content (average). na – not available. 
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Table 3. Spearman´s rank correlations between soil properties and metal and bio-available concentrations, values shaded in grey are correlated with r > 0.50 and statistically significant at the 

p < 0.05 and 0.01 level. 

  
pH Clay OM Pas Asregia Cdregia Curegia Feregia Mnregia PbTregia Znregia AsDTPA CdDTPA CuDTPA FeDTPA MnDTPA PbDTPA ZnDTPA 

pH 1                  

Clay -0.06 1                 

OM -0.16 0.18 1                

Pas 0.18 0.29 0.42* 1               

Asregia 0.05 0.07 0.25 0.21 1              

Cdregia 0.20 0.37* 0.09 0.31 0.56** 1             

Curegia -0.12 0.39* 0.01 0.31 0.52** 0.62** 1            

Feregia -0.35* 0.30 -0.06 0.15 0.31 0.39* 0.82** 1.00           

Mnregia -0.12 0.19 -0.04 -0.07 0.37* 0.31 0.57** 0.78** 1.00          

PbTregia 0.08 0.36* 0.09 0.41* 0.72** 0.77** 0.77** 0.52** 0.39* 1         

Znregia 0.12 0.43** 0.03 0.36* 0.39* 0.79** 0.65** 0.52** 0.43** 0.68** 1        

AsDTPA -0.51** 0.21 0.48* 0.16 0.07 -0.18 -0.22 -0.21 -0.38* -0.26 -0.34 1       

CdDTPA 0.15 0.07 0.07 0.13 0.33 0.05 0.09 -0.08 0.23 0.05 -0.05 0.12 1      

CuDTPA 0.21 0.25 -0.30 0.31 0.32 0.52** 0.34 0.06 -0.04 0.47* 0.45* 0.09 0.38 1     

FeDTPA -0.44* 0.07 0.24 -0.03 0.00 -0.42* 0.14 0.20 0.07 -0.32 -0.37 0.44* 0.49* -0.06 1.00    

MnDTPA -0.42* 0.34 -0.09 -0.07 -0.27 -0.39* -0.07 0.09 -0.02 -0.24 -0.31 0.27 0.20 -0.16 0.47* 1.00   

PbDTPA 0.11 0.10 -0.25 0.18 0.14 -0.08 0.27 0.04 0.00 0.15 -0.14 0.05 0.63** 0.54** 0.47* 0.23 1 
 

ZnDTPA 0.19 0.09 0.07 0.13 0.43* 0.07 0.22 0.08 0.41* 0.13 0.03 0.03 0.94** 0.24 0.47* 0.23 0.54** 1 

* Correlation is significant at the 0.05 level (2-tailed); ** Correlation is significant at the 0.01 level (2-tailed). 
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Figure 4. Mean trace elements concentrations in soils in the transects Coriviri –T1, Ventaimedia –T2 and Poopó –T3. determined by: a) 
Aqua regia extraction (pseudo total concentration), and b) DTPA extraction (bioavailable concentration). The values are on a dry weight 

basis. 

3.3 Bio-available TEs for plants and their origin 

Similar to the aqua regia extracts, the DPTA extractions, considered as the fraction of TEs available for crops 

(Table 2, Fig. 4), did not display a significant difference between mean concentrations of TEs at the three studied 
sites. Significant positive Spearman’s rank correlations are found among the available TEs (Table 3), indicating that 

these TEs are potentially available for plants. Hong et al. (2008) concluded that the amount of Cu, Pb, Zn extracted 
by a single step chelating agent (i.e., DTPA) can be considered as the bioavailable fraction. Meanwhile, comparing 

with physical-chemical characteristics, only the bioavailable AsDTPA-OM shows a significant correlation at p < 0.05 
level (Table 3), suggesting that this As could be a linked to OM. Furthermore, carbonate species are also 
established as potentially bioavailable, but the slightly negative (r = -0.51; p < 0.01). Spearman’s rank correlation 

between soil pH-AsDTPA suggests that the retention of TEs in carbonates is not dominant, agreeing with the results 
of the step 1 As sequential extraction. The bioavailable content of TEs could be over-estimated since DTPA 
extraction can release the soluble, exchangeable, adsorbed and organically bound TEs and possibly also some of 

the metal and metalloids fixed on oxides (Levei et al., 2009). 

The availability ratio (AR) of TEs contents in soil were as follows: less than 2% for AsDTPA; < 33% (except in 

one sample, 80%) for CdDTPA; < 9% for CuDTPA; < 5% for PbDTPA and < 10% (except in one sample, 48%) for ZnDTPA 

(Table 2). The soils show a low AR for Cu, Pb and Zn; however, for Cd, more than 50% of the samples exhibit a 
relatively high ratio, ranging from 11 to 33. This range suggests both recent events and long-term soil enrichment 

are simultaneously influencing the three studied areas. This finding agrees well with the results of Tapia et al. 
(2012), who reported that Cd concentrations are higher in the superficial soils of the Eastern Cordillera. Fuge et 

al. (1993) states that Cd is a more chalcophile element than Zn and tends to persist as a sulfide, whereas ZnS 
weathers more rapidly. As a result, Cd becomes enriched relative to Zn in the soil, which explains its relative 
immobility in surface soils. 

3.4 Arsenic fractionation in soil 

The maximum concentration of exchangeable AsF1 (readily available) is 0.29 mg/kg (mean 0.17; range 0.14 – 0.29 

mg/kg) (Table 2). It constituted a negligible portion of total As, but it may represent the most important fraction 
related to environmental risk (Wenzel et al., 2001). The T2 samples have slightly higher AsF1 contents than the T1 
and T3 samples. The sample at T3 have the source of As likely from dissolution of magnesium arsenate (Mg2As2O7) 

mineral (Fig. 3). 

The fraction of specifically sorbed AsF2 was in the range 0.60 – 2.84 mg/kg (mean 1.13 mg/kg). As released in 
this fraction can be potentially mobilized as a result of competition between phosphate (PO4

3-) and arsenate 

(AsO4
3-) for adsorption sites, due to changes of pH or phosphate application to these soils (Wenzel et al., 2001; 

Niazi et al., 2011; Khan et al., 2022) and this fraction reflects the pool that is directly bioavailable to plant roots 
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(Wenzel et al., 2001). Amorphous Fe oxides associated with AsF3 represent the largest pool with a range from 4.29 
to 12.06 mg/kg (mean 7.14 mg/kg). 

Arsenic (AsF4) extracted from crystalline Fe oxides varies from 2.30 – 9.96 mg/kg (mean 6.05). The AsF5 

residual phase varies from 1.68 – 28.35 mg/kg (mean 7.62 mg/kg). The relatively high amount of As in the residual 

phase (18.6 – 65.2%) can be due to a low rate of formation of soils resulting in a large sand fraction containing 
minerals such as As-rich pyrite or arsenopyrite in accordance with the geology characteristics (USGS and 
GEOBOL, 1992) and the high As concentrations in surficial soils in the Altiplano and the Eastern Cordillera (Tapia 

et al., 2012). The last three fractions represent the largest pool of As (~ 90%). The order of the fractions, F3 = F5> 
F4, suggests that As is mainly associated with amorphous Fe oxides. 

Fractions 2 – 4 can provide information into the lability of As in these soils, influenced by changes in pH, redox 

state, OM content (Wenzel et al., 2001), and environmental conditions such as mineral composition and drainage. 
The cropping period occurs during the rainy season (from November to March, with 372 mm/year of 

precipitation), when many agricultural areas are submerged, experiencing alternating anoxic and oxic conditions. 
These changes in Eh – pH conditions are partly due to the proximity of the cultivated areas to rivers (Fig. 1). 

There is a six-fold difference between the amount of As extracted by DTPA (Lindsay and Norvell, 1978) and 

sequential extraction (Wenzel et al., 2001). The first method extracted less than 2% of the total As, while the 

second method extracted up to 12% (< 2%, fraction 1, F1; and < 10%, fraction 2, F2) of the total As content as a 

potentially mobilized fraction, which could be transferred to crops or dissolved in groundwater (Ramos Ramos et 
al., 2014). These differences can be explained by the specificity and selectivity of the reagents used by the 
sequential extraction procedure of Wenzel et al. (2001) and the DTPA reagent, which is specific for bound metal-

complexes (Lindsay and Norvell, 1978). This suggests that the DPTA extraction is not a good predictor for 
available As. 

3.5 Trace elements in edible parts of crops  

The TEs concentrations are given on a fresh weight basis (fw), which was converted from dry weight basis 
assuming a mean water content of 90% (Rötting et al., 2013). The discussion in this section is limited to three TEs 

(i.e. As, Cd, and Pb) due to their phytotoxicity (McBride, 1994; Kabata-Pendias and Mukherjee, 2007; Zhao et al., 
2022). The results are compared with study of crops by Rötting et al. (2013), in smelter areas near the study area 
Oruro (Bolivian Altiplano). 

Among the crops, mean As contents are found in the decreasing order of beans and alfalfa (0.19 mg/kg) > 
barley (0.17 mg/kg) > potato (0.11 mg/kg); no samples exceeded the tolerable limits for crops. The Chilean 

regulation for food (Muñoz et al., 2002) establishes 0.5 mg/kg, fresh weight, for cereals and legumes, and 1.0 mg/kg 
for other products. The contents measured here are three-fold below the regulatory limit. Also, As contents are 
found lower than those in a review database (mean: 6.22 mg/kg; range: 0.005 – 56.9 mg/kg) reported by Rötting et 

al. (2013). Additionally, the one-way ANOVA depicts that there is no significant difference between As content in 

crops (p < 0.05, one-way, significance level of 0.09). The t-test (0.05 level of significance) of As indicates a 

significant difference between beans and potato. 

The mean concentrations of Cd are in the decreasing order as follows: beans (0.03 mg/kg) > potato peeled 
(0.023 mg/kg) > alfalfa (0.017 mg/kg) > barley (0.012 mg/kg). The mean Cd content is 0.021 mg/kg, not exceeding 

the international (FAO, WHO, European) regulation guidelines which establish limits for potatoes (peeled) and 
stem/root vegetables (0.10 mg/kg, fresh weight) and other vegetables (0.05 mg/kg, fresh weight) (JECFA, 2005; 
European Commission Regulation (EC-1881), 2006). 

The Pb contents are high in the decreasing order: beans (0.32 mg/kg) > alfalfa (0.22 mg/kg) > barley and potato 
peeled (0.16 mg/kg). The European regulation guidelines allow a maximum level of 0.20 mg/kg (fresh weight) for 

cereals and legumes (barley, alfalfa and beans), and 0.10 mg/kg for peeled potatoes (European Commission 
Regulation (EC-1881), 2006). The beans, alfalfa and potatoes exceeded the limits for cereals, legumes and potato. 
The mean value (0.19 mg/kg) found in our study is higher than the value of international regulations by ~ 2 fold. 

These Pb contents are much lower than the data in the review database (mean: 3.28 mg/kg; range: 0.03 – 43.5 

mg/kg) reported by Rötting et al. (2013) (by 1.5 fold). 

The one-way ANOVA for As (significance level of 0.09), Cd (significance level of 0.0004) and Pb (significance 
level of 0.07) indicates that there are no significant differences in mean values between crops for As and Pb, but 
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there is a significant difference for Cd contents between crops. The Student’s t-test for Cd found that there are 
significant differences between beans versus barley (0.0167) and barley versus potato (0.0167) crops. 

3.6 Accumulation in crops 

In principle, there are three pathways for human exposure linked to soil contamination: soil – plant – human (food 

chain pathway), soil – human (incidental soil ingestion), additionally in mining and arid zones especially the 
inhalation of dust pathway, the latter reported by Goix et al., (2011). They studied Oruro city where inhalation is 
an important factor for TEs intake.  

The transfer factors (TF) calculated by equation (2) show different ranges for As (0.002 – 0.020), Cd (0.09 – 
0.143), and Pb (0.0003 – 0.02) (Table 4). The mean values of TFAs are 2% for beans and barley, 0.8% for alfalfa, and 

0.6% for potato, indicating that only a small fraction of As is transported from the soils to the plant, compared with 

the 12% available As. Arsenic can be accumulated in the soils due to its link to the amorphous and crystalline Fe 
oxide present in the soils, which was confirmed by the fixed As fraction (fractions 3, 4, and 5), and also given the 

aerobic conditions favorable to barley cultivation, where less mobile As(V) prevails with resulting stronger 
retention of As (Williams et al., 2007). No significant correlations between As concentration in crops and the 
exchangeable As fraction (step 2, extracted by ammonium phosphate, not shown here) was observed, taking into 

account the edible part of the crops as reported in other works (Niazi et al., 2011). 

Table 4. Trace elements concentration (mg/kg) in edible part of crops (bean, barley, potato and alfalfa), the concentrations are expressed 

on a fresh weight basis (fw) and transfer factor (TF). 

Parameters 
Concentrations I.R. Transfer Factor 

Min Max Mean Max Min Max Mean 

Beans, n = 7        

As 0.186 0.242 0.194 0.5 § 0.006 0.020 0.011 

Cd 0.015 0.049 0.034 0.1 # 0.018 0.143 0.068 

Pb 0.077 0.499 0.319 0.2 # 0.002 0.024 0.009 

Barley, n = 13        

As 0.09 0.40 0.17 0.5 § 0.002 0.020 0.009 

Cd 0.01 0.03 0.01 0.1 # 0.009 0.054 0.022 

Pb 0.04 0.40 0.16 0.2 # 0.000 0.012 0.005 

Potato, n = 12        

As 0.093 0.208 0.122 0.1 § 0.004 0.013 0.006 

Cd 0.008 0.044 0.023 0.1 # 0.015 0.095 0.047 

Pb 0.038 0.493 0.156 0.1 # 0.000 0.016 0.005 

Alfalfa, n = 4        

As 0.093 0.316 0.189 0.5 § 0.004 0.015 0.008 

Cd 0.008 0.025 0.017 0.1 # 0.016 0.080 0.038 

Pb 0.038 0.446 0.225 0.2 # 0.001 0.012 0.005 

Global        

As na na 0.160 na na na na 

Cd na na 0.020 na na na na 

Pb na na 0.190 na na na na 

§ Chilean standard, Muñoz et al., 2002; I.R. International regulations; # JECFA, 2005; European Commission Regulation (EC-1881), 2006. 

Crop concentration (fresh weight basis, fw), soil concentrations (dry weight basis, dw). Crop concentrations on dry weight ba sis was 

converted to fresh weight basis assuming a mean water content of 90% (Rötting et al., 2013). Global, crop concentrations taken into 

account all crops in this study. na – Not available. 
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The mean observed TFCd value are 6.8% for beans, 4.7% for potato, 3.8% for alfalfa, and 2.2% for barley. 
Oporto et al. (2009) reported that the DGT flux experiments concluded that the enhancement in Cd uptake by 

chloride complexes is most pronounced at low Cd supply. However, Zheng et al. (2011) deduced that root hairs 

contribute to Cd uptake by barley, particularly in soils with elevated available Cd. The uptake of Cd increases in 

the presence of high Cd available concentrations, in agreement with the findings of Oporto et al. (2009). This is 
due to the relatively high amount available CdDTPA in the soils (i.e. availability ratio < 33%), with high EC values in 
the three transects (Table 1) and low concentrations in barley crops. 

The mean values of TFPb are much lower than those for Cd, varying from 0.9% for beans to 0.5% for barley, 
potato and alfalfa, indicating that much of the Pb available could be fixed and retained on the roots. Previous 
studies reported excessive amounts of Pb in the crops in smelter areas (Rötting et al., 2013), near this study area. 

Miller et al. (2004) examined four communities along the Pilcomayo River (southern Bolivia) which is 
influenced by mining activities in its upstream area and found that the most significant contamination of soils is by 

Cd, Pb, and Zn. The respective contents exceeded recommended guideline values for agricultural use, but the 
results also suggested that most vegetables do not accumulate significant quantities of TEs in their edible parts. 
Hence, the most significant exposure pathway appears to be the ingestion of contaminated soils attached to dust 

particles and consumed with vegetables, which are the usual meal in the Bolivian Altiplano. Therefore, peeling 

potatoes before consuming could be an effective way of reducing dietary intake of TEs, since there are higher 

concentrations of Cd, Pb and Zn in potato peel than in peeled potato (Yang et al., 2011). 

4. Conclusions 

In general, the pseudo-total TEs concentrations found in this study are higher than the world soils average values, 

but lower than the mean values of the Proyecto Piloto Oruro (PPO) report. These high contents are related to 
the geological conditions and the presence of polymetallic belts in the Eastern Cordillera of the Andes, suggesting 

that the geogenic signal is stronger than the anthropogenic signal. 

In terms of bioavailable contents (DPTA extracts), TEs in soils follow the order Cd > Zn > Cu > Pb. The 
DTPA method extracted less than 2% of the total As, while the sequential extraction reported up to 12% (< 2%, 

step 1 and < 10.0%, step 2), which represents less than 3.1 mg/kg of the total As content, as a potentially mobilized 
fraction, which could be transferred to crops or dissolved in groundwater. The large pool of As can be 
accumulated in the soils due to amorphous and crystalline Fe oxides present in the soils, confirmed by the fixed As 

fractions (fractions 3, 4, and 5). 

Evaluation of the edible parts of the crops (beans, barley and potato) found that As and Cd concentrations are 

lower than the values in international regulations. In contrast, Pb shows higher concentrations for beans and 
potato by a factor of about two, but the opposite is found for barley. Transfer factor (TF) values show that the 
amount transported from soil to the edible parts of the crops for As is 2% in beans and barley, 0.8% in alfalfa and 

0.6% in potato; while, for Cd the value is 6.8% in beans, 4.7% in potato, 3.8% in alfalfa and 2.2% in barley. However, 

the TF for Pb varied from 0.9% for beans to 0.5% for barley, potato and alfalfa. 

In future research, it is important to consider the speciation of TEs (e.g. organic-As and inorganic) and their 
bio-accessibility for human body, linked to the WHO/FAO provisional tolerable weekly intakes (PTWI). The 
studied TEs should be further explored in mining areas of the Bolivian Altiplano for minimizing the potential health 

risks for local population. 
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