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Highlights 

• Aerosol optical depth (AOD) values within a 10 km radius of monitoring stations were most effective in addressing 
cloud cover interference. 

• AOD values in conjunction with meteorological data were suitable for PM2.5 predictions. 

• The integration of satellite and ground-based data was essential for reliable PM2.5 estimation. 

• The developed machine learning models demonstrated generalizability in estimating PM2.5 levels at other locations. 

Abstract 

Accurately predicting particulate matter, 2.5 microns or less in diameter (PM2.5), concentrations is imperative to the future 
of public health and environmental policies. Machine learning models incorporating spatial and temporal datasets to predict 
PM2.5 concentrations are often limited by data availability and poor-resolution satellite imagery. In this study, we present 

multiple predictive models designed for generalized PM2.5 predictions, the output of which has been utilized for different 
spatial locations. Using Random Forest (RF) and Extreme Gradient Boost (XGB) algorithms, these predictive models follow 

a multidisciplinary approach using Moderate Resolution Imaging Spectroradiometer Aerosol optical depth (MODIS AOD) and 

surface datasets (relative humidity, barometric pressure, outdoor temperature, wind speed and wind direction). Models are 
trained and validated based on historical data to evaluate the impact of training data variability and quantity on the predictive 

performance of RF and XGB models for PM2.5 concentrations. Using MODIS AOD alone yielded weak predictive performance, 
with average R2 values ranging from -0.06 to 0.07 across the three urban areas (Washington, D.C., Boston, and New York 
City), highlighting its limited capability. The integration of meteorological data (temperature, wind speed, wind direction, 

relative humidity, and barometric pressure) along with MODIS AOD significantly improved the model performance. RF 
models achieved R² values of 0.30–0.62, while XGB models had R² values of 0.25–0.63, with corresponding RMSE values 

reduced by 20–30% relative to AOD-only models. Feature importance analysis revealed that PM2.5 predictions were most 
strongly influenced by temperature (average importance of 0.21), wind speed (0.20), and wind direction (0.15). MODIS AOD 
exhibited moderate importance (≈0.12), indicating that although satellite-based aerosol observations contributed to the 
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predictions, ground-based meteorological variables remained the primary drivers. These quantitative results highlighted that 

combining satellite observations with meteorological measurements substantially enhanced PM2.5 predictive accuracy, 
informing urban planning, environmental policy, and public health interventions to better protect vulnerable populations. 

Keywords: PM2.5 concentration; MODIS AOD; Air quality management; Artificial intelligence; Predictive modelling. 

1 Introduction 

Particulate matter, 2.5 microns or less in diameter (PM2.5), commonly sourced from motor vehicles, burning of fossil fuels, 
and power plants-have a wide range of detrimental effects on human health (American Lung Association, 2024). Studies show 
that traffic-related air pollution alone contributes significantly to urban PM2.5 concentrations (Qin et al., 2006; Karner et al., 

2010). Exposure to these fine particles can cause both short-term and long-term health effects such as, coughing, sneezing, 
shortness of breath, bronchitis, and long-term health effects like lung cancer, chronic obstructive pulmonary disease (COPD), 

stroke, and ischemic heart disease (American Lung Association, 2024; Feng et al., 2016). Research has shown that people of 
color are disproportionately affected by poor air quality. Tessum et al. (2019) found that non-Hispanic White individuals 
generate approximately 17% more PM2.5 than they consume, while Black and Hispanic groups inhale 56% and 63% more, 

respectively, then they are responsible for producing. 

A number of studies have attempted to predict PM2.5 concentrations using atmospheric data, most commonly Moderate 
Resolution Imaging Spectroradiometer Aerosol Optical Depth (MODIS AOD). Kumar et al. (2007) observed a significant 

positive association between AOD and PM2.5 concentrations at both point level (disaggregated) and 5–10 km AOD pixel levels 
(aggregated). Although AOD has shown strong predictive capabilities due to its positive correlation with PM2.5 concentrations, 

it cannot always be relied upon as the sole predictor in models (Chu et al., 2016). Relying solely on AOD poorly predicts 
PM2.5 concentrations due to the inconsistency of satellite imagery availability over a longer period. Some studies overcome 
this issue by integrating more variables into their predictive models. Kibirige et al. (2023) aimed to accurately predict PM2.5 

concentrations in Northern Taiwan using data from air quality monitoring stations. In addition to traditional monitoring data, 
they incorporated remote transported pollutants (RTP) variables to capture the influence of air pollutants transported from 

other regions. Their neural network models were trained on data from 2014–2015 and tested on 2016 data. The evaluation 
included two different datasets: the Extended Local Satellite Dataset (ESD), which provided daily-level PM2.5 predictions, and 
the RTP-based dataset, which offered hourly-level PM2.5 predictions (Kibirige et al., 2023). High accuracy within models were 

attained when they were fed with meteorological data only (Kibirige et al., 2023). A modeling approach using Extreme 
Gradient Boost and Inverse-Distance Weighting with MODIS AOD, meteorological data, and land use showed strong 

performance in estimating mean and maximum PM2.5 concentrations, with mean absolute errors of 3.68 and 9.20 μg/m3 and 

mean absolute deviations from the median of 8.55 and 15.64 μg/m3 (Gutiérrez-Avila et al., 2022). 

Several studies have already effectively applied machine learning algorithms/models to predict ambient PM2.5 

concentrations at high spatial resolutions using satellite-derived AOD values (Paciorek and Liu, 2009; Kumar and Pande, 
2023). Currently, the use of machine learning models in air quality modeling had expanded significantly, integrating various 
approaches such as convolutional neural network (CNN), random forest (RF), Extreme Gradient Boost (XGB), and deep 

learning (DL) models. Many models face issues with overfitting, temporal bias, and limited generalizability across cities. A 
pipeline combining a CNN and RF model with local contrast normalization was developed to detect PM2.5 hotspots at 300 m 

resolution using satellite imagery and meteorological data. The CNN extracted predictive features from the imagery, which 

were then used in the RF model along with meteorological inputs to generate the final predictions (Zheng et al., 2021). 

Random forest and XGB provide many benefits in air quality modeling. Random forest generates an ensemble of decision 

trees and aggregates their outputs to produce a final prediction (Nath et al., 2022). Sample features were termed column 
sampling and data points as row sampling (Samad et al., 2023). While XGB iteratively improves predictions by minimizing 
errors across the model demonstrating superior optimization capabilities for pollutant concentration prediction (Li et al., 

2022). Scientists estimated daily CO concentrations in Taiwan for the period from 2000 to 2018 using deep neural network, 
RF, and XGB. They concluded that XGB had the highest R-squared (R2) values of 0.85, followed by RF and neural network 

with 0.84 and 0.81, respectively (Wong et al., 2021). Additionally, day of the week and season were also considered in studies 
predicting PM2.5 concentrations to increase model performance. Day of the week and season were highlighted as the most 
critical predictors, because of their strong connection with weather-linked seasonal effects (Kaveh et al., 2025). When 

combined with meteorological and AOD data, these predictors were consistently identified as the most important across 
diverse modeling approaches, including RF, Support Vector Machine (SVM), and Long Short-Term Memory (LSTM). 

The goal of this study was to build on existing knowledge by applying RF and XGB models to generate a generalized 
machine learning outcome for comparing PM2.5 predictions across three cities (McMillian, Washington, D.C.; Queens, New 
York City; and Dudley Roxbury, Boston, Massachusetts) with varying levels of urban characteristics along the East Coast of 

the United States of America (USA). This study also assessed how increased data variability and quantity affected machine 
learning models in accurately predicting air quality by integrating remote sensing data and ground measurements. 
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Furthermore, beyond the prediction of PM2.5 concentrations, this study also explored the mechanisms driving air quality 

dynamics and generalizability of models to be utilized for other cities. 

2 Study area 

The study area is located in three major cities of the USA, which includes air monitoring stations in McMillan, Washington, 
D.C., Queens, New York City, and Dudley Roxbury, Boston, Massachusetts (Fig. 1). All three locations were among the 

many areas in the United States (US) that have taken initiatives toward cleaner air, by partnering with the Department of 
Energy and Environment (DOEE), USA. 

Both PM2.5 and meteorological sensors were located above ground to collect data that was representative of the area, 

negating ground influences such as road dust and human activity. The height of the sensors also supported comparisons across 
locations, such as urban vs. rural or high density vs. low density areas. PM2.5 sensors were located 3 to 4 m above ground 

level (agl), temperature sensors were located 1.5 to 2 m agl, relative humidity sensors were located 1.5 to 2 m agl, wind 
speed and direction were located 10 m agl, and barometric pressure was located at the station elevation level. Wind speed 
and wind direction sensors were relatively higher than the rest to reduce interference from buildings and trees. 

3 Methodology 

3.1 Datasets 

Meteorological variables, PM2.5 measurements and MODIS AOD were collected for this study. AOD values were retrieved 

from MODIS Terra/Aqua MCD16A2 satellite, utilizing Google Earth engine. Daily values were taken within the 10 km buffer 
around each monitoring station (McMillian, Queens, and Dudley Roxbury) for the temporal period (2011–2023). A 10 km 

buffer was applied for MODIS AOD data collection to align with the sensor’s spatial resolution, which estimates aerosol 
concentrations over a 10 km × 10 km area (Remer et al., 2005). 

Meteorological variables collected using United States Environmental Protection Agency’s (US EPA’s) Air Quality System 

(AQS) database, include temperature (T, °F), relative humidity (RH, %), barometric pressure (PP, mbar), wind speed (WS, 
knots) and wind direction (WD, degrees). For each variable, the maximum (max) value and corresponding hour were also 
recorded. These datasets were used as inputs for model simulations employing RF and XGB to generate predictions (Table 

1). 

3.2 Modelling technique 

Two Artificial Intelligence (AI) models were used to identify the ideal model for predicting the concentrations of PM2.5, based 

on meteorological conditions. Random forest model was built on decision tree structure by combining the outputs of multiple 

 
Figure 1. Map of the study area in three cities in the Northeastern USA. Circles represent a 10 km buffer. 
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decision trees to enhance predictive accuracy. Each decision tree in the forest was trained on a random set of data, using the 
bagging technique. This technique reduces the risk of overfitting that can with individual decision trees, as it averages out the 

noise and variability in the data. Random forest introduces randomness that lacks collinearity, making the overall model 

generalized and capable of handling complex patterns in the data (Park et al., 2020). To predict PM2.5 concentrations, RF 

model effectively manages the non-linear relationships between PM2.5 concentrations and environmental variables and AOD. 
On the other hand, XGB model uses an advanced form of boosting to build models sequentially, focusing on reducing errors 
made from previous iterations. Each model prioritizes correcting the remaining errors of the earlier models by assigning 

greater weight to poorly predicted data points. The final output was a weighted combination of all the models. Like RF, XGB 
model effectively captures complex pattern in the data while minimizing the errors (Chen and Guestrin, 2016). 

Random forest and XGB models have many similarities and differences. Both effectively capture data patterns and 

relationships in complex scenarios based on their assigned parameters. This study does not utilize hyperparameters tuning 
within RF and XGB model structures. Lack of hyperparameters allows for generalizations and future model integrations. 

3.3 Modelling framework 

Figure 2 outlines the detailed modelling framework utilized in this study. Data preparation, including data gathering, and data 
cleaning was a significant step of modeling efforts. Data preparation includes data organization and data cleaning steps, such 

as deleting missing data to produce a dataset without NaN, not a number, values. This step ensures combining AOD values, 

meteorological data and PM2.5 concentrations with the same corresponding dates and times. 

Data preparation and cleaning were essential steps in ensuring the accuracy and reliability of the PM2.5 prediction models. 

The process began with collecting data from multiple sources (Table 1). Ground-based PM2.5 measurements were obtained 
from air quality monitoring stations, providing direct observations of fine particulate matter concentrations. MODIS AOD 
values were retrieved from the Terra and Aqua MCD16A2 satellites using Google Earth Engine, with daily values extracted 

within a 10 km buffer surrounding each monitoring station. This buffer aligns with the satellite sensor’s spatial resolution,  
which estimates aerosol concentrations over a 10 km × 10 km area. Meteorological variables, including temperature, relative 

humidity, barometric pressure, wind speed, and wind direction were acquired from the US EPA Air Quality System (AQS) 
database, providing hourly measurements at each station. 

A key challenge in data preparation was reconciling datasets with different temporal resolutions. While AOD data were 

available at a daily temporal scale, meteorological and PM2.5 measurements were recorded hourly. To address this, hourly 

PM2.5 and meteorological data were aggregated into daily averages to match the AOD data. This ensured that each observation 
in the combined dataset corresponded to a consistent daily temporal unit, allowing the models to learn relationships between 

daily AOD, meteorological variables, and PM2.5 concentrations effectively. 

Data cleaning was conducted to handle missing or invalid values, which can arise from instrument malfunctions, cloud 

cover affecting satellite observations, or gaps in station records. All missing values, represented as NaN, were identified across 
all variables. Rows containing incomplete observations were removed to produce a complete dataset without missing values. 

Table 1. Datasets used for model developments. 

Variable Description Source Units 

PM2.5 Ground-level particulate matter 

concentration 

US EPA AQS database  µg/m³ 

AOD Aerosol optical depth MODIS Terra/Aqua MCD16A2 via Google 
Earth Engine, daily mean within 10 km buffer 

Unitless 

T Temperature (Max, mean values and 

max hour) 

US EPA AQS database °F 

RH Relative humidity (Max, mean values 

and max hour) 

US EPA AQS database % 

PP Barometric pressure (Max, mean 
values and max hour) 

US EPA AQS database mbar 

WS Wind speed (Max, mean values and 
max hour) 

US EPA AQS database knots 

WD Wind direction (Max, mean values 
and max hour) 

US EPA AQS database degrees 

 

https://aqs.epa.gov/aqsweb/airdata/download_files.html
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD19A2_GRANULES
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD19A2_GRANULES
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Although imputation methods could have been applied, removing rows with missing data was preferred to avoid introducing 

potential biases, particularly given the sensitivity of machine learning models to inconsistent inputs. 

Once cleaned, aligned, and aggregated to the daily scale, the datasets were merged into a single structured dataset suitable 

for input into RF and XGB models. Each row of the final dataset contained the daily average PM2.5 concentration, the 
corresponding daily AOD value, and aggregated meteorological variables for that day and location. This comprehensive and 

consistent dataset provided a strong foundation for the machine learning models to capture complex interactions between 

AOD, meteorological conditions, and ground-level PM2.5 concentrations, ultimately improving prediction accuracy. 

Python version 3.10.9 and Google Earth Engine (GEE) was employed to import data, spatially clean data, perform 
statistical analysis, and build and run models. A baseline model was first established to evaluate performance improvements 

through iterations prior to prediction simulations. To ensure model accuracy, the framework integrates a performance 
analysis, using metrics such as R2 values, Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Mean Absolute 

Error (MAE). For the model development, the input data included the following parameters: AOD, T, Tmax, RH, PP, WS, 
WD, day, month, and year. 

For the modeling, 80% of the available data was used for training, while the remaining 20% was utilized for testing. This 

split ensured that the training phase captured a broad range of conditions, while the test phase evaluated model performance 
on unseen data. This methodology was consistently applied across different study area locations, with models built, trained, 

and tested using data from Washington, D.C., Boston, and New York City. PM2.5 predictions were generated using models 
trained on either five or ten years of data, incorporating MODIS AOD and meteorological variables for each city. Additionally, 

the same model structure was applied to predict PM2.5 concentrations for one city using the meteorological and AOD data 

from the other cities, for example using Washington, D.C. and Boston data to predict New York City PM2.5 concentrations. 

3.4 Model evaluation metrics 

Feature importance functions were utilized to understand which predictor variables play a major role in PM2.5 prediction and 

variability. In RF and XGB models, feature importance was calculated by measuring the contribution of each feature to 

reducing variance across all the decision trees in the group. Features that were consistently led to greater reductions in 
predictions error were given higher importance scores, thereby highlighting their influence on the models’ output. 

A performance evaluation of these models was very crucial in understanding the key contributors to the models’ 
performances. Weighing more on variables that contribute positively to the models can drastically increase model accuracy. 
Additionally, being able to see how outputs vary with inputs, exposes the behavior and robustness of the models. 

4 Results 

4.1 MODIS AOD 

For visualizing long-term trends in AOD, daily MODIS AOD values were smoothed using a 30-day moving average to reduce 
short-term variability and improve readability (Fig. 3). This moving average calculates the mean AOD over a 30-day window 
that shifts sequentially across the dataset, highlighting broader temporal patterns while minimizing the impact of daily 

fluctuations. 

 
Figure 2. Methodological framework of atmospheric and surface datasets and steps taken to predict PM2.5 concentrations. 
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From 2011 to 2021, daily MODIS AOD observations were extracted within a 10 km buffer around each monitoring site. 

Over the 10-year period, a total of 3,227 daily AOD observations were recorded for Washington, D.C.; 2,511 for Boston; 
and 2,532 for New York City. Each value represented a single daily observation at each site, and the dataset included only 

days with available MODIS measurements. Washington, D.C. had the maximum value of 0.3815 on 07/26/2021 and a minimum 

value of 0.0598 on 12/08/2015. In Boston, a maximum value of 0.3052 on 08/23/2021 and a minimum value of 0.0872 on 
12/19/2015 was recorded, while a maximum value of 0.3531 on 08/11/2021 and a minimum value of 0.0965 on 02/10/2012 

were recorded in New York City (Fig. 3). Washington, D.C. had the highest recorded AOD value among three monitoring 
stations, indicating more atmospheric particulate matter than New York City and Boston. Washington, D.C.’s peak AOD 
value in 2021 suggests a potential increase in pollution events such as extreme weather (Liu et al., 2022). All three cities had 

minimum AOD values below 0.1 in the late 2010s, indicating consistent periods of low particulate matter in the atmosphere. 
The AOD peaked during the late 20th century in all three cities could reflect historical industrial and vehicular emissions, 

AOD peaks may specifically be attributed to the Canadian wildfires in 2021 (Jaffe et al., 2020). 

Typically, AOD values were often elevated in the winter, variable in the spring, highest in the summer and lowest in the 
fall. AOD levels were the highest in the Summer, especially in urban areas because biomass/fossil fuel burning increases with 

the uses of cooling equipment and vehicles, which increases aerosol loading. Whereas the cooling temperatures in the fall 
reduces aerosol production. Colder temperatures in the winter cause elevated AOD levels because of the use of residential 

heating, which increases emissions and consequently raises aerosol loading (Gupta and Christopher, 2008). All three cities 

have recorded similar ranges of AOD values, frequently fluctuating between 0.1 and 0.5. This shows a baseline level of aerosol 
presence across the urban environments. New York City stands out as the only city that has experienced higher peaks of 

AOD levels over the 10 years (Fig. 3). 

In this study, AOD measurements were recorded at 550 nm due to their sensitivity to PM2.5. This wavelength, located in 

the green portion of the visible spectrum, effectively captures the scattering and absorption properties of aerosols, with 
minimal interference from atmospheric gases. As a result, it provided a reliable substitute for assessing PM2.5 concentrations 
in urban environments. 

4.2 Environmental variables 

Over the 10-year period, extreme meteorological values did not consistently group within a specific decade or cluster of 
years, suggesting temporal variability in climatic extremes. However, during few years, specifically 2011, 2013, 2015, 2016, 
2017 and 2019, frequent extremes were observed, indicating increased atmospheric variability during these periods. While 

some cities showed seasonal patterns, such as higher wind speeds in summer for New York City and Washington, D.C., 

extreme values overall vary by city and weather variable, highlighting the region’s complex and dynamic climate behavior 

(Table 2). 

Furthermore, distinct seasonal patterns are evident in both temperature and wind speed across all three cities, with peak 
values typically occurred during the summer months and lows during winter (Fig. 4). These trends align with the expected 

influence of solar radiation on the climatic characteristic of the northeastern United States. Wind speed patterns, particularly 
in New York City and Washington, D.C., also demonstrated seasonality, likely driven by regional storm dynamics. In contrast, 

 
Figure 3. Time series of MODIS AOD for 2011–2021. Data was smoothed using a 30-day moving average to make increase readability. 

 



J.A. Macharie et al.   J. Environ. Sci Health Sustain. 2025, 1(2), 144–159 
 

    150  

relative humidity and barometric pressure show more moderate fluctuations. Relative humidity appeared to follow 
temperature trends to some extent but with more contained fluctuations, while barometric pressure remained relatively 

stable over time, reflecting the more conservation nature of atmospheric shifts. Wind direction showed the highest degree 
of variability, fluctuating considerably throughout the observation period and across locations, likely reflecting localized 

conditions. Overall, it highlights both the repetitive nature and the intercity differences in atmospheric conditions across the 
northeastern United States. 

4.3 PM2.5 concentrations 

PM2.5 values were collected daily for each air quality monitoring station, McMillian in Washington, D.C., Dudley Roxbury in 

Boston and Queens in New York City for 10 years (Fig. 5). In Washington, D.C., a maximum value of 15.68 mg/m3 on 
07/21/2021 and a minimum value of 4.06 mg/m3 on 04/03/2020 were recorded. Boston had a maximum value of 13.94 mg/m3 

on 07/20/2011 and a minimum value of 3.34 mg/m3 on 05/13/2020 and New York City had a maximum value of 10.87 mg/m3 
on 01/06/2011 and a minimum value of 3.09 mg/m3 on 05/09/2020. The highest PM2.5 value in New York City suggests a major 

pollution event. Similarly, Boston and New York City had both experienced a peak PM2.5 value in 2021, indicating a region-

wide pollution event. All three cities experienced low PM2.5 concentrations in 2020, suggesting a cleaner atmospheric 
conditions. 

The occurrence of maximum PM2.5 levels in summer months (June-July) suggests that these pollution peaks may coexist 

with variables like higher temperatures or increased traffic. Overall, there was an evident variability in the amount of PM2.5 
data collected across the three cities. All three cities show a significant decrease in concentrations, especially from 2020 until 

 
Figure 4. Time series meteorological data for Washington, D.C., Boston and New York City. 
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experiencing a drastic increase in 2021 over the 10-year period. The downward trend reflects the impact of air quality 

regulations, COVID pandemic, and efforts to reduce emissions from industries (Zheng et al., 2025). In the early 2020s, Boston 
showed several peaks, symbolizing periods of poor air quality. Similarly, Washington, D.C. and New York City have also 

experienced an increase in PM2.5 levels mid-2020’s. Out of all the three urban areas, Washington, D.C. had consistently 

moderate PM2.5 levels throughout the period compared to Boston and New York City. Moreover, Boston showed 
pronounced PM2.5 peaks because of more pollution events or poor weather conditions. This time series was a direct 

representation of the effectiveness of stricter air quality regulations and policies in the United States (Zheng et al., 2025). 

4.4 AOD, meteorological data, and PM2.5 relationships 

Wind speed, wind direction, and relative humidity played a major role in shaping PM2.5 concentrations throughout the 10-

year period. PM2.5 levels tended to be lower during periods of higher wind speed, which likely promoted greater atmospheric 

Table 2. Maximum and minimum values of meteorological data throughout the 10-year study period. 

Variable City Maximum (date) Minimum (date) 

Temperature (°F) Washington, D.C. 80.59 (12/15/2016) 35.90 (01/02/2013) 

Boston 72.76 (03/20/2017) 30.62 (08/29/2011) 

New York City 74.85 (04/02/2017) 37.68 (09/19/2014) 

Humidity (%) Washington, D.C. 64.13 (03/10/2021) 43.87 (07/20/2015) 

Boston 61.53 (05/16/2019) 44.88 (01/03/2011) 

New York City 72.31 (02/02/2014) 48.28 (06/10/2016) 

Pressure (mbar) Washington, D.C. 1,015 (05/27/2015) 1,007 (10/19/2015) 

Boston 1,017 (07/30/2016) 1,012 (02/21/2012) 

New York City 1,016 (07/21/2021) 1,010 (03/04/2020) 

Wind Speed (knots) Washington, D.C. 9.13 (08/25/2019) 4.58 (03/03/2021) 

Boston 3.95 (07/17/2016) 1.76 (02/14/2014) 

New York City 9.60 (09/24/2019) 3.68 (04/28/2015) 

Wind Direction (°) Washington, D.C. 247 (01/02/2013) 166 (01/02/2013) 

Boston 264 (01/03/2011) 195 (03/16/2019) 

New York City 265 (02/09/2012) 185 (07/12/2019) 

 

 
Figure 5. Time series PM2.5 concentrations for 10 years. Data was smoothed using a 30-day moving average to make increase readability. 
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dispersion and reduced the accumulation of surface-level pollutants. In contrast, low wind speed conditions, common during 
colder months, may have contributed to stagnant air masses that trap pollutants near the surface, elevating PM2.5 

concentrations. Wind direction also showed a subtle but significant relationship with PM2.5, as certain directional flows 

corresponded with localized spikes in fine particulate levels (Fig. 6). This directional dependency emphasizes the role of 

regional transport in urban air quality, where upwind sources can contribute to pollution. Relative humidity exhibited a 
positive relation with PM2.5, particularly during the colder months. High humidity can facilitate the formation of secondary 
aerosols and allow particulates to absorb moisture and grow, exacerbating air quality issues. This relationship also suggests 

that meteorological conditions during the winter months may compound pollution effects beyond emissions alone (Fig. 6). 

MODIS AOD, temperature and PM2.5 concentrations each demonstrated distinct seasonal patterns across this 10-year 
study period. AOD values peaked mainly during the summer and early fall months (July and September), aligning with higher 

outdoor temperatures. This seasonal peak was also accompanied by elevated PM2.5 concentrations, suggesting a temporal 
overlap in the presence of aerosols and fine particulate matter. Temperature followed an annual cycle, with maximum values 

in the summer and minimal values during the winter. PM2.5 concentrations also showed seasonal variation, which increases 
during colder months, likely due to greater fossil fuel consumption for heating. Surprisingly, while AOD and PM2.5 both showed 
summer peaks, winter PM2.5 concentrations were also elevated despite lower AOD values, indicating that PM2.5 sources and 

atmospheric behavior during colder months are not always reflected in satellite-derived AOD values. This inconsistency 
highlighted the complex and non-linear relationship between these variables. These observations suggest that PM2.5 

concentrations were influenced by a dynamic interaction of meteorological variables and seasonal human activity. The 
combination of low wind speed, high humidity, and low temperatures often marked periods of elevated pollution, particularly 
in winter, while higher temperatures, moderate wind speeds, and low humidity during summer correlated with elevated but 

more dispersed PM2.5 levels. 

4.5 PM2.5 predictions 

AOD measures the scattering and absorption of sunlight by aerosols in the atmosphere, which was related to the PM2.5 

concentration. AOD represents the total aerosol load in the atmospheric column and reflects PM2.5 concentration of fine 
particulate matter near the surface. AOD data from MODIS provides comprehensive spatial and temporal coverage. Satellite-
derived AOD complements surface level PM2.5 measurements by filling gaps in monitoring networks. 

Incorporating environmental variables, AOD, and temporal data into predictive models enhances their accuracy by 
capturing dynamic interactions between meteorological conditions and pollutant levels. The models trained only with AOD 

had R2 values close to 0 and were therefore deemed poor predictors of PM2.5 concentrations while the models trained with 

meteorological (wind speed, wind direction, relative humidity, temperature, and barometric pressure) and AOD data 
produced R2 values of 0.25 and greater (Tables 3–5). The prediction was done only with models trained with meteorological 

and AOD data. To test the generalizability of the training models for each city, predictive models were developed utilizing a 
combination of data from two out of the three cities to predict the third city (Table 6). For example, the Washington, D.C. 
PM2.5 predictions used New York City and Boston data, while the Boston PM2.5 prediction model used Washington, D.C. and 

New York city data. The New York City PM2.5 prediction model was trained using Boston and Washington, D.C. data. 

Models using data for the 10-year period produced R2 values of 0.68 (RF) and 0.67 (XGB) for Washington, D.C. For 

Boston PM2.5 prediction models, RF and XGB models produced R2 values of 0.21 and 0.23, respectively. For New York City 
PM2.5 prediction models, RF and XGB produced R2 values of 0.47 and 0.43, respectively (Table 6). 

Model performance varied across locations and training periods. For Washington, D.C., both RF and XGB achieved 

strong results, with R2 values improving from 0.54 (5 years) to 0.68 (10 years) for RF and from 0.54 to 0.67 for XGB, alongside 

 
Figure 6. Correlation matrix shows the relationship between AOD, meteorological data and PM2.5 concentrations in all three cities. 
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Table 3. The results of the model training for Washington, D.C. 

Timeline Model R2 MSE MAE RMSE 

Predictors: MODIS AOD 

5 years  

(2017-2021) 

RF -0.06 16.07 2.87 4.01 

XGB 0.03 14.80 2.66 3.85 

10 years 

(2011-2021) 

RF -0.04 4.99 1.63 2.23 

XGB 0.01 4.78 1.60 2.19 

Predictors: MODIS AOD, meteorological data and season 

 5 years 

(2017-2021) 

RF 0.62 5.44 1.74 2.33 

XGB 0.63 5.34 1.76 2.31 

10 years 

(2011-2021) 

RF 0.52 7.32 1.89 2.71 

XGB 0.58 6.37 1.86 2.52 

 

Table 4. The results of the model training for Boston, Massachusetts. 

Timeline Model R2 MSE MAE RMSE 

Predictors: MODIS AOD 

5 years  

(2017-2021) 

RF 0.07 9.87 2.37 3.14 

XGB 0.04 10.25 2.44 3.20 

10 years  

(2011-2021) 

RF -0.06 3.86 1.47 1.97 

XGB 0.01 3.64 1.46 1.91 

Predictors: MODIS AOD, meteorological data and season 

5 years  

(2017-2021) 

RF 0.32 10.47 2.28 3.24 

XGB 0.31 10.56 2.24 3.25 

10 years  

(2011-2021) 

RF 0.30 9.29 2.15 3.05 

XGB 0.25 9.98 2.20 3.16 

 

Table 5. The results of the model training for Queens, New York City. 

Timeline Model R2 MSE MAE RMSE 

Predictors: MODIS AOD 

5 years  

(2017-2021) 

RF -0.03 16.92 3.26 4.11 

XGB 0.04 15.76 3.23 3.97 

10 years  

(2011-2021) 

RF -0.01 2.67 1.23 1.64 

XGB -0.01 2.65 1.24 1.63 

Predictors: MODIS AOD, meteorological data and season 

5 years  

(2017-2021) 

RF 0.39 11.55 2.44 3.40 

XGB 0.31 13.14 2.60 3.63 

10 years  

(2011-2021) 

RF 0.42 13.79 2.52 3.71 

XGB 0.34 15.69 2.67 3.96 
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decreases in error metrics (MSE, MAE and RMSE). In contrast, Boston predictions showed weaker performance for both RF, 
declined from 0.39 (5 years) to 0.21 (10 years), and XGB, from 0.32 to 0.23, with only minimal improvements in error values, 
suggesting more difficult in capturing PM2,5 dynamics for this city. New York City results were moderate, with RF models 

improving slightly from 0.43 (5 years) to 0.47 (10 years), while XGB models achieved R2 values of 0.41 to 0.43. Error metrics 
for New York City were higher than Washington, D.C., but lower than Boston, indicating moderate predictive ability. Overall, 

Washington, D.C. was the most predictable location, Boston the least and New York City fell in between (Table 6). 

4.6 Feature importance  

Feature importance was determined using both RF and XGB algorithms. Random Forest calculates feature importance based 
on the mean decrease in impurity, a metric that measures how much each feature reduces the impurity in the data when used 

to split nodes across all decision trees in the model. Each time a feature is used for a split, the resulting reduction is recorded. 
These reductions are then summed across all trees in the forest and normalized so that the importances across all features 
add up to 1 (Díaz-Uriarte and De Andres, 2006). On the other hand, XGB determines feature importance by counting the 

number of times a feature is used to split nodes across all boosting rounds. This count is weighted by the usefulness of the 

splits. As with RF, XGB importances are normalized so that their total equals 1 (Chen and Guestrin, 2016). 

Feature importance indicates the key meteorological variables influencing PM2.5 concentrations, which will provide insights 
into air quality dynamics across regions. The top feature demonstrates the highest importance in model predictions (Di et al., 
2016). Maximum temperature, wind speed, season, mean temperature and year were the top five predictors driving model 

accuracy (Figs. 7–8). These variables influence atmospheric dispersion, chemical reactions, and pollutant accumulation. Wind 
speed plays a major role, as it helps in understanding how quickly pollutants disperse and serves as a means of transporting 

pollutants across regions. Additionally, maximum temperature and mean temperature impacts human activity, e.g., during the 
summertime, people run air conditioning and coolers, which increases PM2.5 concentrations (Jacob and Winner, 2009). These 
factors improve model performance by considering environmental variability that correlates with PM2.5 concentrations (Zhang 

and Ma, 2012). 

The variables ‘maximum temperature’, ‘mean wind speed’, ‘year’, ‘mean wind direction’ and ‘mean temperature’ emerged 

as important predictors of PM2.5 concentrations, as they reflect broader climatic and temporal trends that influence air quality. 

Although ‘year’ captures long-term trends, it may not directly affect PM2.5 concentrations as strongly as other environmental 
variables. In contrast, features such as maximum relative humidity, pressure, and wind direction showed lower predictive 

power (Fig. 8). 

Air pollution poses a major risk to public health and environmental sustainability (Cohen et al., 2015). Accurate modeling 
of PM2.5 concentrations was significant for developing effective mitigation strategies. Several major insights arose regarding 

Table 6. PM2.5 prediction model results for Washington, D.C., Boston and New York City. 

Location Model Period R2 MSE MAE RMSE 

 

 

Washington, D.C. 

 

RF 5 years 0.54 9.48 2.03 3.08 

RF 10 years 0.68 6.60 1.89 2.57 

XGB 5 years 0.54 9.49 2.02 3.08 

XGB 10 years 0.67 6.69 1.88 2.59 

 

Boston 

RF 5 years 0.39 9.21 2.37 3.25 

RF 10 years 0.21 10.22 2.35 3.20 

XGB 5 years 0.32 10.22 2.32 3.20 

XGB 10 years 0.23 10.05 2.31 3.17 

 

New York City 

RF 5 years 0.43 10.55 2.20 3.25 

RF 10 years 0.47 14.81 2.87 3.85 

XGB 5 years 0.41 11.00 2.48 3.32 

XGB 10 years 0.43 13.26 2.54 3.64 

 



J.A. Macharie et al.   J. Environ. Sci Health Sustain. 2025, 1(2), 144–159 
 

    155  

the model’s ability to predict PM2.5 concentrations across different cities and periods. For all cities, the RF and XGB models 

built with only AOD data performed poorly across all periods (R2 values ranging from -0.05 to 0.07 for RF and 0.01 to 0.02 

for XGB). This indicates that AOD alone was a weak predictor for PM2.5 concentrations, highlighting the need for additional 
variables to increase model accuracy. Incorporating meteorological data improved predictions across all periods. The highest 

R2 values were observed for Washington, D.C. model results for the 2011–2021 period, with 0.68 for RF and 0.67 for XGB. 
The lowest R2 values were observed in the Boston model results: 0.21 (RF) and 0.23 (XGB). Increasing data volume and 

variability increased the R2 values for all models, except for Boston (Fig. 9). Even though, these improvements demonstrate 
the significant role of meteorological and MODIS AOD data in accurately predicting PM2.5 concentrations. Boston’s models 
seem to be an anomaly, perhaps because the variability in the city’s data was too great for the generalized model to capture 

the underlying pattern. On the other hand, the AOD-only models for all sites have failed to produce robust predictions, even 
with datasets for the longer time periods (2011–2021). On the contrary, including meteorological data in the models yield 
better R2 values, ultimately enhancing the predictive power. The performance of the models improved consistently as more 

historical data and additional variables were included into the model structure. 

5 Discussion 

Seasonal variability plays an important role in aerosol patterns. Similar to previous studies, we observed co-variation during 

summer, when high AOD, temperature, and PM2.5 concentrations align, consistent with the effects of photochemical activity 

and atmospheric instability (van Donkelaar et al., 2010). In contrast, weaker correlations were observed in winter, when PM2.5 
often shows high values despite lower AOD. This creates inconsistencies in satellite-derived AOD observations under 
conditions such as temperature inversions and low vertical mixing. Furthermore, the relationship between temperature and 

PM2.5 is complex: higher temperatures may enhance secondary aerosol formation through photochemical processes, yet they 

 

 

Figure 7. Feature importances for each city across both models for the 5- and 10-year time periods. 
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can also promote dispersion depending on the local meteorological conditions (Jacob and Winner, 2009). These findings 
emphasize the importance of considering seasonal and meteorological factors when interpreting urban aerosol dynamics. 

Several peaks exceeding 0.30 AOD were recorded in New York City and Washington, D.C. during 2020 and 2021, 
indicating periodic episodes of elevated aerosol concentrations. These spikes are commonly associated with environmental 

events such as dust storms or wildfires, which have been shown to significantly increase AOD levels in urban areas (Daniels 
et al., 2024). Such patterns highlight the need for multi-variable approaches when modeling air quality in urban areas. 

The use of AOD measurements at a 550 nm wavelength as a predictor is well established in the literature. This wavelength 

shows a strong correlation with PM2.5 concentrations in urban areas and is minimally influenced by non-aerosol atmospheric 
components, making it a reliable choice for remote sensing applications (Handschuh et al., 2022). However, previous studies 
have emphasized that AOD alone is insufficient for accurate PM2.5 prediction due to spatial heterogeneity, vertical aerosol 

profiles, and meteorological variability (Gupta et al., 2006). These results highlighted the need for multi-parameter approaches 
in air quality modelling. 

Our model results highlighted the complex nature of aerosol-meteorological processes. The relatively low R² values 
reflect the inherent challenges of predicting surface-level PM2.5 from satellite-derived AOD and meteorological data. This 
outcome is consistent with previous studies. For instance, Liu et al. (2007) reported R² values of 0.36–0.55 for MODIS AOD 

and PM2.5 relationships in the northeastern United States, while Paciorek and Liu (2009) observed R² values as low as 0.2–0.4 
across multiple regions. Similarly, van Donkelaar et al. (2010) noted persistent challenges in urban-scale prediction. Zheng et 

al. (2021) and Kumar and Pande (2023) observed that their machine learning models produced moderate R² values (0.3–0.6) 
depending on season and geography. Within this context, our results are comparable, and importantly, it showed a clear 

improvement relative to AOD-only 

models. The addition of 
meteorological variables improved 

explained variance and reduced 
RMSE by 20–30%, demonstrating 
meaningful predictive power even if 

absolute R² values remain modest. 

These findings emphasized both the 
utility and limitations of AOD-

based modeling and highlight the 
importance of continued 

methodological development. By 
building on the framework 

presented here with higher-

resolution data, chemical transport 
model outputs, and deep learning 

approaches, future research can 
more effectively support air quality 
monitoring and policy planning in 

data-sparse and vulnerable regions. 

 
Figure 8. Feature importances for model predictions in each city. 

 

 
Figure 9. PM2.5 predictive model performances across study areas and model types. 
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Several research directions can be considered: firstly, extending predictions to areas without monitoring stations is critical 

for addressing gaps in air quality data coverage. This could involve combining remote sensing, meteorological inputs, and 
spatial interpolation techniques with geostatistical and machine learning methods. Incorporating land-use information may 

further improve model accuracy by accounting for localized emission sources; secondly, integrating PM2.5 prediction models 
with climate projections would provide insight into how changing temperature, wind patterns, and precipitation regimes may 

affect future air quality. Such projections are especially valuable for informing long-term mitigation strategies. Given that 

marginalized and low-income communities often experience the greatest burden of poor air quality, these efforts carry 
important implications for reducing health disparities and addressing socio-political inequities in urban environments (Tessum 
et al., 2019; Josey et al., 2023). 

6 Conclusion 

This study demonstrated that AOD data alone provided weak capabilities for PM2.5 predictions in urban areas like Washington, 
D.C., Boston, and New York City. Although the integration of MODIS AOD and meteorological data significantly improved 
all model performance, there were limitations in data availability. The results highlight the importance of integrating satellite-

based observations (AOD) with ground-based meteorological measurements to improve the accuracy of PM2.5 predictions. 
In addition, the findings reveal a weak correlation between AOD and PM2.5 concentrations and demonstrate the performance 
of RF and XGB models across multiple years. The models built using both dataset types have proven to be dependable. The 

predictive accuracy improved with datasets for longer time periods (2011-2021), particularly in Washington, D.C., suggest 

that these models can provide valuable insights for air quality management in major urban environments. Furthermore, model 

development could explore additional meteorological variables or possibly alternative remote sensing data to further improve 
prediction accuracy. 
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