Trace Elements in Soils, Their Uptake by Crops and Potential Health Risks: Insights From a Legacy Mining Area in Oruro, Bolivian Altiplano
DOI:
https://doi.org/10.63697/jeshs.2025.029Keywords:
Bolivian Altiplano, Crops, Bioavailable Trace Elements, Accumulation, Transfer FactorAbstract
A geochemical study was conducted in the legacy mining area in Oruro, the Bolivian Altiplano to examine the distribution of trace elements (TEs) in agricultural soils and their uptake by crops. The pseudo-total, bioavailable fractions of TE and sequential extraction fraction of As contents were determined in soils. The pseudo-total concentration of TEs in soils suggests naturally elevated background levels. The strong correlation (p < 0.01) between Feregia/Mnregia-Asregia, Curegia, and Znregia suggests that secondary iron oxides play a key role in adsorbing these TEs. Species linked to carbonates are also present, but negative (r = -0.51; p < 0.01) correlation between soil pH and AsDTPA suggests that the retention of TEs in carbonate is not dominant. The chelate diethylene-triamine-pentaacetic acid (DTPA) method extracted less than 2% of total As, whereas sequential fractionation reported up to 12% as potentially mobilized (F1–non-specifically-bound + F2–specifically-bound), posing a risk of transfer to crops or groundwater. As, Cd and Pb tend to accumulate in soils by binding to amorphous and crystalline Fe oxide surfaces. Arsenic levels in beans and alfalfa (0.19 mg/kg), barley (0.17 mg/kg), and peeled potatoes (0.11 mg/kg), Cd levels in beans (0.03 mg/kg), alfalfa (0.017 mg/kg), barley (0.012 mg/kg), and peeled potatoes (0.023 mg/kg), remained within Chilean, FAO, WHO, and European regulatory limits. However, Pb concentrations exceeded permissible limits in beans (0.32 mg/kg), and alfalfa (0.22 mg/kg); however peeled potatoes (0.16 mg/kg) and barley (0.16 mg/kg) remained below the threshold of European guidelines.
Downloads
References
Adamo, P., Agrelli, D., Zampella, M., Caporale, A.G., 2024. Chapter 10 – Chemical speciation to assess bioavailability, bioaccessibility, and geochemical forms of potentially toxic metals (PTMs) in polluted soils. Editor(s): Benedetto De Vivo, Harvey E. Belkin, Annamaria Lima, Environmental Geochemistry (Third Edition), Elsevier, 211–269.
Arce-Burgoa, O., Goldfarb, R., 2009. Metallogeny of Bolivia. Society of Economic Geologist Newsletter, 79 pp, http://www.osvaldoarce.com/Metallogeny.html (accessed on 15 March 2014).
Argollo, J., Mourguiart, P., 2000. Late Quaternary climate history of the Bolivian Altiplano. Quaternary International, 72, 37–51. https://doi.org/10.1016/S1040-6182(00)00019-7
ASA (American Society of Agronomy), 1982. Methods of soil analysis. Part 2. American Society of Agronomy, Madison, WI.
Banks, D., Holden, W., Aguilar, E., Mendez, C., Koller, D., Andia, Z., Rodriguez, J., Saether, O.M., Torrico, A., Veneros, R., Flores, J., 2002. Contaminant source characterization of the San José Mine, Oruro, Bolivia. Geological Society, London, Special Publications, 198, 215–239. https://doi.org/10.1144/GSL.SP.2002.198.01.14
Banks, D., Markland, H., Smith, P.V., Mendez, C., Rodriguez, J., Huerta, A., Saether, O.M., 2004. Distribution, salinity and pH dependence of elements in surface water of the catchment area of the Salars of Coipasa and Uyuni Bolivian Altiplano. Journal of Geochemical Exploration, 84, 141–166. https://doi.org/10.1016/j.gexplo.2004.07.001
Bray, R.H., Kurtz, L.T., 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59, 39–45. http://dx.doi.org/10.1097/00010694-194501000-00006
Bundschuh, J., Maity, J.P., Mushtaq, S., Vithanage, M., Seneweera, S., Schneider, J., Bhattacharya, P., Khan, N.I., Hamawand, I., Guilherme, L.R.G., Reardon-Smith, K., Parvez, F., Morales-Simfors, N., Ghaze, S., Pudmenzky, C., Kouadio, L., Chen, C.Y., 2017. Medical geology in the framework of the sustainable development goals. Science of the Total Environment, 581–582, 87–104. https://doi.org/10.1016/j.scitotenv.2016.11.208
Bundschuh, J., Nath, B., Bhattacharya, P., Liu, C.W., Armienta, M.A., López, M., Lopez, D., Jean, J.S., Cornejo, L., Fagundes, L., Macedo, L., Filho, A., 2012. Arsenic in the human food chain: the Latin American perspective. Science of the Total Environment, 429, 92–106. https://doi.org/10.1016/j.scitotenv.2011.09.069
Burak, D.L., Fontes, M., Terra Santos, N., Soares, L.V., De Sousa, E., Becquer, T., 2010. Geochemistry and spatial distribution of heavy metals in oxisols in a mineralized region of the Brazilian Central Plateau. Geoderma, 160, 131–142. https://doi.org/10.1016/j.geoderma.2010.08.007
Cáceres Choque, L.F., Ramos Ramos, O.E., Valdez S.N., Choque, R.R., Choque, R.G., Fernández, S.G., Sracek, O., Bhattacharya, P., 2013. Fractionation of heavy metals and assessment of contamination of the sediments of Lake Titicaca. Environmental Monitoring Assessment, 185, 9979–9994. https://doi.org/10.1007/s10661-013-3306-0
Calderon, R., García-Hernández, J., Palma, P., Leyva-Morales, J.B., Godoy, M., Zambrano-Soria, M., Bastidas-Bastidas, P.J., Valenzuela, G., 2023. Heavy metals and metalloids in organic and conventional vegetables from Chile and Mexico: Implications for human health. Journal of Food Composition and Analysis, 123, 105527. https://doi.org/10.1016/j.jfca.2023.105527
Charkiewicz, A.E., Omeljaniuk, W.J., Nowak, K., Garley, M., Nikliński, J., 2023. Cadmium toxicity and health effects—A brief summary. Molecules, 28, 6620. https://doi.org/10.3390/molecules28186620
Chen, M., Ma, L., 2001. Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of American Journal, 65, 491–499. https://doi.org/10.2136/sssaj2001.652491x
Cornejo-Ponce, L., Acarapi-Cartes, J., 2011. Fractionation and bioavailability of arsenic in agricultural soils: Solvent extraction tests and their relevance in risk assessment. Journal of Environmental Science and Health, Part A, 46, 1247–1258. https://doi.org/10.1080/10934529.2011.598807
Coudrain-Ribstein, A., Loosemore, T., Rochat, P., Quintanilla, J., Younger, P., 1995. Use of a groundwater model in assessing possible sources of salinity on the central Bolivian Altiplano. In: Models for Assessing and Monitoring Groundwater Quality (ed. by B. J. Wagner, T. H. Illangasekare & K. H. Jensen) (Proc. Boulder Symp., July 1995). IAHS Publ. no. 227.
Cui, Y-J., Zhu, Y-G., Zhai, R-H., Chen, D-Y., Huang, Y-Z., Qiu, Y., Liang, J-Z., 2004. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environment International, 30, 785–791. https://doi.org/10.1016/j.envint.2004.01.003
Del Río, M., Font, R., Almela C., Vélez, D., Montoro, R., De Haro Bailón, A., 2002. Heavy metals and arsenic uptake by wild vegetation in the Guadiamar river area after the toxic spill of the Aznalcóllar mine. Journal of Biotechnology 98, 125-137.
D'Souza, R., Favas, P.J., Varun, M. and Paul, M.S., 2023. Dynamics of trace element bioavailability in soil: agronomic enhancement and risk assessment. Medical Geology: En route to One Health, pp. 203–216. https://doi.org/10.1002/9781119867371.ch13
Díaz, O., Leyton, I., Muñoz, O., Nuñez, N., Devesa, V., Súñer, M., Vélez, D., Montoro, R., 2004. Contribution of water, bread and vegetables (raw and cooked) to dietary intake of inorganic arsenic in a rural village of northern Chile. Journal of Agricultural and Food Chemistry, 52, 1773–1779. https://doi.org/10.1021/jf035168t
Díaz, O., Tapia, Y., Pastene, R., Montes, S., Nuñez, N., Vélez, D., Montoro, R., 2011. Total and bioavailable arsenic concentration in arid soils and its uptake by native plants from the Pre-Andean zones in Chile. Bulletin Environmental Contamination Toxicology, 86, 666–669. https://doi.org/10.1007/s00128-011-0269-0
Dieter, H.H., Bayer, T.A., Multhaup, G., 2005. Environmental copper and manganese in the pathophysiology of neurologic diseases (Alzheimer´s disease and Manganism). Acta Hydrochimica Hydrobiologica, 33, 72–78. https://doi.org/10.1002/aheh.200400556
European Commission Regulation (EC-1881). Setting maximum levels for certain contaminants in foodstuffs #1881. 2006. http://data.europa.eu/eli/reg/2006/1881/oj
Fuge, R., Pearce, F.M., Pearce, N.J.G., Perkins, W., 1993. Geochemistry of Cd in the secondary environment near abandoned metalliferous mines, Wales. Applied Geochemistry, 2, 29–35. https://doi.org/10.1016/S0883-2927(09)80006-1
Goix, S., Point, D., Oliva, P., Polve, M., Duprey, J.L., Mazurek, H., Guislain, L., Huayta, C., Barbieri, F., Gardon, J., 2011. Influence of source distribution and geochemical composition of aerosols on children exposure in the large polymetallic mining region of the Bolivian Altiplano. Science of the Total Environment, 412–413, 170–184. https://doi.org/10.1016/j.scitotenv.2011.09.065
Han, F.X., 2007. Biogeochemistry of trace elements in arid environments. Springer Dordrecht, The Netherland.
Hong, C.L., Jia, Y.B., Yang, X.E., He, Z.L., Stofella, P.J., 2008. Assessing lead thresholds for phytotoxicity and potential dietary toxicity in selected vegetable crops. Bulletin of Environmental Contamination and Toxicology, 80, 356–361. https://doi.org/10.1007/s00128-008-9375-z
INE, 2005. Instituto Nacional de Estadística. Atlas estadístico de Municipios. La Paz, Bolivia. ISBN: 99905-63-10-1.
ISO/DIS 11466, 1994. In environment soil quality. ISO standards compendium, Switzerland.
Jackson, M., 1958. Soil Chemical Analysis. 1st ed. Prentice Hall Pub. Co., New York.
JECFA, 2005. Joint FAO/WHO expert committee and food additives. Sixty-fourth meeting. www.fao.org/es/esn/jecfa/index_en.stm (Accessed on November 28, 2012).
Kabata-Pendias, A., Pendias, H., 2001. Trace elements in soils and plants. 3rd ed. Boca Raton: Florida.
Kabata-Pendias, A., Mukherjee, A.B., 2007. Trace elements from soil to human. Springer Berlin Heidelberg New York.
Khan, J., Gupta, G., Shrivastava, R. and Singh, N.K., 2022. An introduction to arsenic: sources, occurrence, and speciation. Arsenic in Plants: Uptake, Consequences and Remediation Techniques, 1–24. https://doi.org/10.1002/9781119791461.ch1
Khan, K., Lu, Y., Khan, H., Ishtiaq, M., Khan, S., Waqas, M., Wei, L., Wang, T., 2013. Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food and chemical toxicology, 58, 449–458. https://doi.org/10.1016/j.fct.2013.05.014
Khan, S., Rehman, S., Khan, A.Z., Khan, M.A., Shah, M.T., 2010. Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicology and Environmental Safety, 73, 1820–1827. https://doi.org/10.1016/j.ecoenv.2010.08.016
Levei, E., Frentiu, T., Ponta, M., Senila, M., Miclean, M., Roman, C., Cordos, E., 2009. Characterization of soil quality and mobility of Cd, Cu, Pb and Zn in the Baia Mare area Northwest Romania following the historical pollution. International Journal of Environmental Analytical Chemistry, 89, 635–649. https://doi.org/10.1080/03067310902792586
Lindsay, W.L., Norvell, W.A., 1978. Development of a DTPA test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
Liu, F., Zhang, Z., Zhang, L., Meng, R.N., Gao, J., Jin, M., Li, M., Wang, X.P., 2022. Effect of metal ions on Alzheimer’s disease. Brain and Behavior, 12, e2527. https://doi.org/10.1002/brb3.2527
Liu, Q., Fang, Z., Shi, Z., Li, J., Rao, Z., 2021. Flow-sediment regulation regime influencing mobilization of trace metals in shallow aquifer and surface water in the Yellow River Delta, China. Human and Ecological Risk Assessment: An International Journal, 27, 1883–1901. https://doi.org/10.1080/10807039.2021.1920826
Maity, J.P., Nath, B., Kar, S., Chen, C-Y., Banerjee, S., Jean, J-S., Liu, M-Y., Centeno, J.A., Bhattacharya, P., Chang, C.L., Santra, S.C., 2012. Arsenic induced health crisis in peri-urban Moyna and Ardebok villages, West Bengal, India: An exposure assessment study. Environmental Geochemistry and Health, 34, 563–574. https://doi.org/10.1007/s10653-012-9458-y
Massas, I., Ehaliotis, C., Geronditis, S., Sarris, E., 2009. Elevated heavy metal concentrations in tops soils of an Aegean Island town (Greece): total and available forms, origin and distribution. Environmental Monitoring and Assessment, 151, 105–116. https://doi.org/10.1007/s10661-008-0253-2
Massas, I., Ehaliotis, C., Kalivas, D., Panagopoulou, G., 2010. Concentrations and availability indicator of heavy metals; the case of children´s playground in the city of Athens (Greece). Water, Air and Soil Pollution, 212, 51–63. https://doi.org/10.1007/s11270-009-0321-4
Massas, I., Kalivas, D., Ehaliotis, C., Gasparatos, D., 2013. Total and available heavy metal concentrations in soil of the Thriassio plan (Greece) and assessment of soil pollution indexes. Environmental Monitoring and Assessment, 185, 6751–6766. https://doi.org/10.1007/s10661-013-3062-1
McBride, M.B.,1994. Enviromental chemistry of soils. Oxford University Press.
Miller, J.R., Hudson-Edwards, K.A., Lechler, P.J., Preston, D., Macklin, M.G., 2004. Heavy metal contamination of water, soil and produce within riverine communities of the Río Pilcomayo basin, Bolivia. Science of the Total Environment, 320, 189–209. https://doi.org/10.1016/j.scitotenv.2003.08.011
Muhammad, S., Shah, M.T., Khan, S., 2011. Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchemical Journal, 98, 334–343. https://doi.org/10.1016/j.microc.2011.03.003
Mukherjee, A., Coomar, P., Sarkar, S., Johannesson, K.H., Fryar, A.E., Schreiber, M.E., Ahmed, K.M., Alam, M.A., Bhattacharya, P., Bundschuh, J., Burgess, W., Chakraborty, M., Coyte, R., Farooqi, A., Guo, H., Ijumulana, J., Jeelani, Gh., Mondal D., Nordstrom, D.K., Podgorski, J., Polya, D.A., Scanlon, B.R., Shamsudduha, M., Tapia, J., Vengosh, A., 2024. Arsenic and other geogenic contaminants in global groundwater. Nature Reviews Earth & Environment, Vol. 5, 312-328. https://doi.org/10.1038/s43017-024-00519-z
Muñoz, O., Díaz, O., Leyton, I., Nuñez, N., Devesa, V., Súñer, M., Vélez, D., Montoro, R., 2002. Vegetables collected in the cultivated Andean area of northern Chile: Total and inorganic arsenic contents in raw vegetables. Journal of Agricultural and Food Chemistry, 50, 642–647. https://doi.org/10.1021/jf011027k
Niazi, N.K., Singh, B., Shah, P., 2011. Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy. Environmental Science and Technology, 45, 7135–7142. https://doi.org/10.1021/es201677z
Nordberg, G., Jin, T., Bernard, A., Fierens, S., Buchet, J.P., Ye, T., Kong, Q., Wang, H., 2002. Low bone density and renal dysfunction following environmental cadmium exposure in China. Ambio, 31, 478–481. https://doi.org/10.1579/0044-7447-31.6.478
Oporto, C., Smolders, E., Degryse. F., Verheyen, L., Vandescasteele, C., 2009. DGT-measured fluxes explain the chloride enhanced cadmium uptake by plants at low but not a high Cd supply. Plant and Soil, 318, 127–135. https://doi.org/10.1007/s11104-008-9823-x
Ormachea, M., Bhattacharya, P., Sracek, O., Ramos, O.R., Aguirre, J.Q., Bundschuh, J., Maity, J.P., 2015. Arsenic and other trace elements in thermal springs and in cold waters from drinking water wells on the Bolivian Altiplano. Journal of South American Earth Sciences, 60, 10–20. https://doi.org/10.1016/j.jsames.2015.02.006
Ormachea, M., Wern, H., Johnsson, F., Bhattacharya, P., Sracek, O., Thunvik, R., Quintanilla, J., Bundschuh, J., 2013. Geogenic arsenic and other trace elements in the shallow hydrogeologic system of Southern Poopó Basin, Bolivian Altiplano. Journal of Hazardous Materials, 262, 924–940. https://doi.org/10.1016/j.jhazmat.2013.06.078
Peirovi-Minaee, R., Alami, A., Esmaeili, F., Zarei, A., 2024. Analysis of trace elements in processed products of grapes and potential health risk assessment. Environmental Science and Pollution Research, 31, 24051–24063. https://doi.org/10.1007/s11356-024-32654-x
Perez-Carrera, A., Noscuzza, C., Fernández-Cirelli, A., 2009. Transfer of arsenic from contaminated dairy cattle drinking water in milk (Córdoba, Argentina). In Natural arsenic in groundwater of Latin America; Bundschuh, J., Armienta, M.A., Birkle, P., Bhattacharya, P., Matschullat, J., Mukherjee, A.B., Eds.; Bundschuh, J., Bhattacharya, P., series Eds.; Arsenic in the Environment, vol. 1. Leiden, The Netherlands: CRC Press/Balkema Publisher, 419–425.
Pillco, R., Bengtsson, L., 2006. Long-term and extreme water level variations of the shallow Lake Poopó, Bolivia. Journal of Hydrological Sciences, 51, 98–114. https://doi.org/10.1623/hysj.51.1.98
PPO–03. Plan Piloto Oruro–03. Panorama de la fisiografía y geología del área del proyecto. Ministerio de Desarrollo Sostenible y Medio Ambiente, Swedish Geological AB. 1996.
PPO–04. Plan Piloto Oruro–04. Evaluación de recursos minerales y su utilización. Ministerio de Desarrollo Sostenible y Medio Ambiente, Swedish Geological AB. 1996.
PPO–13. Plan Piloto Oruro–013. Metal contents in lake sediments, totora and myriophyllum of Lake Uru Uru. Ministerio de Desarrollo Sostenible y Medio Ambiente, Swedish Geological AB, 1996.
PPO. Proyecto Piloto Oruro. Ministerio de Desarrollo Sostenible y medio Ambiente Secretaria Nacional de Mineria, Swedish Geological AB. 1993–1996.
Prieto-García, F., Callejas, H.J. Lechuga, M.A., Gaytán, J.C., Barrado, E.E., 2005. Accumulation in vegetable weavings of arsenic originating from water and floors of Zimapán, Hidalgo State, Mexico. Bioagro, 17, 129–136.
Queirolo, F., Stegen, S., Restovic, M., Paz, M., Ostapczuk, P., Schwuger, M.J., Muñoz, O., 2000. Total arsenic, lead, cadmium level in vegetables cultivated at the Andean villages of northern Chile. The Science of the Total Environment, 255, 75–84. https://doi.org/10.1016/S0048-9697(00)00450-2
Ramos Ramos, O.E., Ormachea, M., Niura, M., Garcia, M.E., Quintanilla, J., Bhattacharya, P., Thunvik, R., Jacks, G., Sracek, O., 2010. Arsenic and other trace elements in groundwater and surface water of the Poopó Basin and drinking water quality in Bolivian Altiplano. In Arsenic in Geosphere and Human Diseases, As 2010; Jean, J.-S., Bundschuh, J., Bhattacharya, P. Eds.; Interdisciplinary Book Series: “Arsenic in the Environment—Proceedings”. Series Editors: Bundschuh, J., Bhattacharya, P., CRC Press/Taylor and Francis; 517–519.
Ramos Ramos, O.E., Cáceres, L.F., Ormachea, M.R., Bhattacharya, P., Quino, I., Quintanilla, J., Sracek, O., Thunvik, R., Bundschuh, J., García, M., 2012. Sources and behavior of arsenic and trace elements in groundwater and surface water in the Poopó Lake Basin, Bolivian Altiplano. Environmental Earth Science, 66, 793–807. https://doi.org/10.1007/s12665-011-1288-1
Ramos Ramos, O.E., Rötting, T.S., French M., Sracek, O., Bundschuh, J., Quintanilla, J., Bhattacharya, P., 2014. Geochemical processes controlling mobilization of arsenic and trace elements in shallow aquifers and surface waters in the Antequera and Poopó mining regions, Bolivian Altiplano. Journal of Hydrology, 518, 421–433. https://doi.org/10.1016/j.jhydrol.2014.08.019
Romero-Crespo, P., Jiménez-Oyola, S., Salgado-Almeida, B., Zambrano-Anchundia, J., Goyburo-Chávez, C., González-Valoys, A., Higueras, P., 2023. Trace elements in farmland soils and crops, and probabilistic health risk assessment in areas influenced by mining activity in Ecuador. Environmental Geochemistry and Health, 45, 4549–4563. https://doi.org/10.1007/s10653-023-01514-x
Rötting, T.S., Mercado, M., García, M.E., Quintanilla, J., 2013. Environmental distribution and health impacts of As and Pb in crops and soils near Vinto smelter, Oruro, Bolivia. Internation Journal of Environmental Science and Technology, 11, 935–948. https://doi.org/10.1007/s13762-013-0313-1
Sancha, A.M., Marchetti, N., 2009. Total arsenic content in vegetables cultivated in different zones in Chile. In Natural arsenic in groundwater of Latin America; Bundschuh, J., Armienta, M.A., Birkle, P., Bhattacharya, P., Matschullat, J., Mukherjee, A.B., Eds; Bundschuh, J., Bhattacharya, P., series editors. Arsenic in the environment, Volume 1. Leiden, The Netherlands: CRC Press/Balkema Publisher; 345–350.
Shaw, A.J., 1990. Heavy metal tolerance in plants: Evolutionary aspects CRC Press, Boca Raton, FL.
Sikakwe, G.U., Eyong, G.A., Ilaomo, B.U., 2023. Contamination of arable soil with toxic trace elements (Tes) around mine sites and the assessment of associated human health risks. Soil and Sediment Contamination: An International Journal, 32, 1157–1192. https://doi.org/10.1080/15320383.2023.2172381
Stiles, L.I., Ferrao, K., Mehta, K.J., 2024. Role of zinc in health and disease. Clinical and Experimental Medicine, 24, 38. https://doi.org/10.1007/s10238-024-01302-6
Sun, C., Bi, C., Chen, Z., Wang, D., Zhang, C., Sun, Y., Yu, Z., Zhou, D., 2010. Assessment on environmental quality of heavy metals in agricultural soils of Chongming Island, Shanghai City. Journal of Geographical Sciences, 20, 135–147. https://doi.org/10.1007/s11442-010-0135-8
Taghavi, M., Darvishiyan, M., Momeni, M., Eslami, H., Fallahzadeh, R.A., Zarei, A., 2023. Ecological risk assessment of trace elements (TEs) pollution and human health risk exposure in agricultural soils used for saffron cultivation. Scientific Reports, 13, 4556. https://doi.org/10.1038/s41598-023-31681-x
Tapia, J., Audry, S., Townley, B., Duprey, J.L., 2012. Geochemical background, baseline and origin of contaminants from sediments in the mining-impacted Altiplano and Eastern Cordillera of Oruro, Bolivia. Geochemistry: Exploration, Environment, Analysis, 12, 3–20. https://doi.org/10.1144/1467-7873/10-RA-04
Tapia, J., Audry, S., 2013. Control of early diagenesis processes on trace metal (Cu, Zn, Cd, Pb and U) and metalloid (As, Sb) behaviors in mining- and smelting-impacted lacustrine environments of the Bolivian Altiplano. Applied Geochemistry, 31, 60–78. https://doi.org/10.1016/j.apgeochem.2012.12.006
Tapia, J., Audry, S., Murray, J., Bhattacharya, P., Ormachea-Muñoz, M., Quino-Lima, I., Nordstorm, D.K., 2022. The solid-state partitioning, distribution, and mineralogical associations of arsenic and antimony: Integrated findings from the Altiplano Puna, South America and international comparisons. Journal of South American Earth Sciences, 114, 103713. https://doi.org/10.1016/j.jsames.2022.103713
Turkdogan, M.K., Fevzi, K., Kazim, K., Ilyas, T., Isamil, U., 2003. Heavy metals in soils, vegetables and fruits in the endemic upper gastrointestinal cancer region of Turkey. Environmental Toxicology and Pharmacology, 13, 175–179. https://doi.org/10.1016/S1382-6689(02)00156-4
Tziouvalekas, M., Noulas, C., Thalassinos, G., Shaheen, S.M., Rinklebe, J., Antoniadia, V., 2024. Temperature-induced changes in DPTA-extractable trace elements: Predicting the potential impact of climate change on the availability of soil elements. Chemosphere, 350, 141064. https://doi.org/10.1016/j.chemosphere.2023.141064
USGS, GEOBOL, 1992. Geology and mineral resources of the Altiplano and Cordillera Occidental, Bolivia. U.S. Geological Survey Bulletin 1975, United States Geological Survey & Servicio Geológico de Bolivia 365p.
Walkley, A.A., 1946. Critical examination of a rapid method for determining organic carbon in soils effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63, 251–263. https://doi.org/10.1097/00010694-194704000-00001
Wenzel, W.W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., Adriano, T., 2001. Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 436, 309–323. https://doi.org/10.1016/S0003-2670(01)00924-2
Williams, P., Villada, A., Deacon, C., Raab, A., Figuerola, J., Green, A., Feldmann, J., Meharg, A., 2007. Greatly enhances arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environmental Science and Technology, 41, 6854–6859. https://doi.org/10.1021/es070627i
Yang, Y., Li, F., Bi, X., Sun, L., Liu, T., Jin, Z., Liu, C., 2011. Lead, zinc, and cadmium in vegetable/crop in a zinc smelting region and its potential human toxicity. Bulletin of Environmental Contamination and Toxicology, 87, 586–590. https://doi.org/10.1007/s00128-011-0388-7
Zapata, R., 2011. Modelo Conceptual hidrogeológico del sistema acuífero de un abanico aluvial en la sub-cuenca del río Poopó: Oruro-Bolivia.
Zhao, F.J., Tang, Z., Song, J.J., Huang, X.Y., Wang, P., 2022. Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. Molecular Plant, 15, 27–44. https://doi.org/10.1016/j.molp.2021.09.016
Zheng, R., Li, H., Jiang, R., Römheld, V., Zhang, F., Zhao, F., 2011. The role of roots hairs in cadmium acquisitions by barley. Environmental Pollution, 159, 408–415. https://doi.org/10.1016/j.envpol.2010.10.034

Downloads
Published
Data Availability Statement
Data will be made available on request.
Issue
Section
License
Copyright (c) 2025 Oswaldo Eduardo Ramos Ramos, Maria Isabel Chambi Tapia, Israel Quino Lima, Tobias S. Rötting, Vladimir Orsag, Lourdes Chambi, Ondra Sracek, Jorge Quintanilla Aguirre, Jyoti Prakash Maity, Arslan Ahmad, Jochen Bundschuh, Prosun Bhattacharya

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright of their work under a Creative Commons Attribution (CC-BY-NC-ND) 4.0 License and grant the journal and/or its publisher (Enviro Mind Solutions | Publishing) the non-exclusive right to publish and distribute the work freely.